scholarly journals Seed rain and soil seed banks in Chinese fir plantations and an adjacent natural forest in southern China: implications for the regeneration of native species

Author(s):  
Bo Liu ◽  
Qingqing Liu ◽  
Chenxi Zhu ◽  
Zhigang Liu ◽  
Zhijun Huang ◽  
...  

The natural regeneration of native broadleaved species underneath forest monoculture plantations is important to recover ecosystem functions and to mitigate adverse environmental effects. To understand how seed rain and soil seed banks facilitate natural regeneration, we surveyed their density and composition in a monoculture Chinese fir plantation, a mixed Chinese fir–broadleaf plantation, and an adjacent natural broadleaved forest for two years in southern China. Twenty-eight species (16 families) were in seed rain, and 45 species (27 families) were in soil seed banks. Seed rain density did not differ significantly across stands; however, the number of taxa in seed rain was highest in the mixed plantation and lowest in the natural forest. Seed bank density was significantly higher in the mixed plantation than in the other stands. The Sørensen similarity indices of species composition between seed sources and aboveground vegetation were relatively low (<0.50). In addition, the seeds of native tree species common to the seed banks of the three forests indicated the adjacent natural forest was a seed source for the natural regeneration of native species in forest plantations. To augment regeneration and accelerate the rate of conversion, we recommend direct seeding or planting of desired species.

2018 ◽  
Vol 48 (9) ◽  
pp. 1034-1041 ◽  
Author(s):  
Bo Liu ◽  
Qingqing Liu ◽  
Stefani Daryanto ◽  
Xiangqing Ma ◽  
Si Guo ◽  
...  

Chinese fir, Cunninghamia lanceolata (Lamb.) Hook. (Taxodiaceae), is an evergreen conifer primarily distributed in southern China. This species exhibits very poor natural regeneration, possibly due to low light and a thick litter layer. To improve the understanding of the natural regeneration capacity of Chinese fir, in this study, we conducted a shade house experiment to determine the optimum light requirements and seed positions for seedling emergence and early growth. The experiment involved five light levels (100%, 60%, 40%, 15%, 5% of full sunlight) and four seed positions (1 cm beneath the soil surface without litter, on the soil surface without soil–seed contact, on the soil surface and covered with litter, and 1 cm beneath the soil surface and covered with litter). Seedling emergence was highest at 5%–15% sunlight, whereas seedling height, root length, root mass, stem mass, leaf mass, and total mass were highest at 60% sunlight. For each light level, seed position significantly affected emergence and growth. The above-litter position inhibited seedling emergence and survival, while the below-litter position favored seedling emergence and early growth, particularly under high light levels. Based on these results, to enhance natural regeneration of Chinese fir, we recommend periodical thinning to increase light into the understory after successful seedling emergence. We also recommend sowing seeds deeper into the litter to improve soil contact and moisture conditions.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Shangbin Bai ◽  
Yixiang Wang ◽  
Richard T. Conant ◽  
Guomo Zhou ◽  
Yong Xu ◽  
...  

Abstract Native species are generally thought not to encroach on adjacent natural forest without human intervention. However, the phenomenon that native moso bamboo may encroach on surrounding natural forests by itself occurred in China. To certificate this encroaching process, we employed the transition front approach to monitor the native moso bamboo population dynamics in native Chinese fir and evergreen broadleaved forest bordering moso bamboo forest in Tianmu Mountain Nature Reserve during the period between 2005 and 2014. The results showed that the bamboo front moved toward the Chinese fir/evergreen broadleaved stand with the new bamboo produced yearly. Moso bamboo encroached at a rate of 1.28 m yr−1 in Chinese fir forest and 1.04 m yr−1 in evergreen broadleaved forest, and produced 533/437 new culms hm−2 yr−1 in the encroaching natural Chinese fir/evergreen broadleaved forest. Moso bamboo coverage was increasing while adjacent natural forest area decreasing continuously. These results indicate that native moso bamboo was encroaching adjacent natural forest gradually without human intervention. It should be considered to try to create a management regime that humans could selectively remove culms to decrease encroachment.


2021 ◽  
pp. 167-180
Author(s):  
Patsavipich Rungrojtrakool ◽  
Pimonrat Tiansawat ◽  
Arunothai Jampeetong ◽  
Dia Panitnard Shannon ◽  
Sutthathorn Chairuangsri

Soil seed banks have been used for investigation of natural regeneration of forests. In this study, we compared seed density and species composition of soil seed banks of trees among natural forests, restored forests of different ages, and abandoned agricultural land. The soil seed banks were collected from a natural forest (NF), 12-year-old and 17-year-old restoration sites (RF12y and RF17y), and 17-year-old abandoned site (AA) at Ban Mae Sa Mai, Chiang Mai, Thailand. A seedling emergence technique was used to assess seed density and species of emerged seedlings was identified. We found 5-8 tree species at each site. Seed densities in the study areas ranged from 43 to 298 seeds/m2. The seed density of RF12y was significantly higher than that of both NF and AA but not significantly different than RF17y (p < 0.01). Although there was no significant relationship between the restoration ages and the seed densities of the soil seed banks, the species composition of standing vegetation was related to the seed bank species. Sorensen’s similarities between the species composition of the soil seed banks and the existing trees in each area were between 0 and 13.79%, suggesting seed dispersal of both within and across study sites. Eight out of fourteen species in the soil seed banks were dispersed into restoration sites without standing vegetation of those species. Seven of those were animal-dispersed species. The selected native trees, framework species, attracted small seed dispersers into the study areas, especially at the restoration sites. This finding suggests that active forest restoration improved natural regeneration in restoration sites as well as neighboring areas via seed dispersal.


Author(s):  
Josephine Esaete ◽  
Augustine Bongo ◽  
Thomas Lado ◽  
Tomor Bojoi ◽  
Henry Busulwa

Soil seed banks are important for regeneration of degraded wetlands ecosystems. The Sudd wetlands of Juba city have long been encroached for crop cultivation. Seedling germination was monitored in a greenhouse to establish possible natural regeneration in Mindiari, Rejaf and Roton wetlands in the Sudd. Sixty-four species germinated from the soil seed bank of which 12.5% were dominated by Cyperus difformis and Typha capensis. The findings showed that median wetland species richness in Mindiari was 1.5 (interquartile range = 0.75?3.5), Rejaf 2.5 (interquartile range = 1.0 ? 4.0), Roton 3 (interquartile range = 1.0 ? 5.0) while median Shannon-Wiener diversity was 1.5 (1.14 ?1.73), 1.43 (1.01?1.66), 1.15 (0.98?1.67) for Mindiari, Rejaf and Roton respectively. Both the median seed species richness and diversity were not significantly different among the study wetlands. The median of seed density (56.1) was significantly higher in Roton than in Mindiari (36.7) and Rejaf (29.4) wetlands. The NMDS results showed that species composition of Mindiari and Rejaf was different from Roton. It is concluded that growing crops in wetlands did not influence species richness and diversity but it reduced seed density and altered species composition. Although wetland species were not significantly different in the three-wetland categories, dominance of canopy species belonging to Typhaceae and Cyperaceae indicates that these species are resilient to cultivation and could facilitate natural regeneration of cultivated wetlands edges of the Sudd region in Juba. Further research should examine effect of cultivation duration and flooding regimes on soil seed bank species richness, diversity, and density and composition.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0250290
Author(s):  
Joanna M. Garaventa ◽  
V. Thomas Parker

Aims The principal chaparral species in California, Adenostoma fasciculatum, an evergreen, sclerophyllous shrub, is broadly distributed and provides habitat and food resources for a large and diverse animal community. The effects of climate change, including elevated temperatures, fire frequency and severity, along with increased urban encroachment, have placed pressure on chaparral habitats in California. Our goal is to investigate aspects of reproductive ecology as a measure of the potential resiliency of A. fasciculatum. We focus on seed rain (all seed falling into the seed traps regardless of origin) and seed banks in the context of plant-animal interactions and regeneration. Methods Stand recovery following disturbance is achieved through both resprouting and germination from established persistent soil seed banks. In this study we focus on seed ecology using a series of experiments to document the length and quantity of seed rain, seed predation, parsing the importance of the community of granivores, and evaluating the connection between stand age and germination rate from soil seed banks. Important findings Our research documented an 8-month seed rain duration with over 1 million seeds per m2, multiple seed predators including passerines (songbirds) and rodents, and points to the possibility of native ants playing a role in the seed dispersal process. This is important given the recent advancement of the invasive Argentine ant (Linepthema humile) into Californian chaparral. This research demonstrates a clear relationship between A. fasciculatum and both resident and migratory granivores in the chaparral. We documented that a 39-year-old stand had higher germination rates than those which were 16, 20, 41 and 71 years old and how seed banks play a major role in assuring resiliency following fire. These findings are important for wildland managers to assure the continued resiliency of A. fasciculatum.


2021 ◽  
Vol 753 ◽  
pp. 141934
Author(s):  
Priscila Sanjuan de Medeiros-Sarmento ◽  
Leandro Valle Ferreira ◽  
Markus Gastauer

1998 ◽  
Vol 76 (5) ◽  
pp. 872-883 ◽  
Author(s):  
Meiqin Qi ◽  
John B Scarratt

The effects of harvesting on seed bank dynamics in a boreal mixedwood forest were studied on replicated 10-ha treatment blocks harvested by different clear-cutting or partial-cutting systems in the fall of 1993. From 1994 to 1995 we monitored seed rain, soil seed banks, and seasonal changes in species composition in understory vegetation and seed banks in all harvest blocks plus three uncut controls. No persistent conifers were found in the soil seed banks of any treatment. The number of seeds of other species generally decreased with soil depth in all treatments, with the lower layer of organic soil yielding the highest numbers of seedlings. Many seeds of sedges and some herbs were found in the upper mineral soil horizon, indicating significant longevity. While disturbance by harvesting operations altered the distribution of seeds in the soil profile, harvesting method had little effect on the total number of species present in post-harvest seed banks or understory vegetation. There were no differences in seasonal compositional changes between treatments. Seed rain monitoring indicated that few conifer seeds were added to the seed bank. Betula papyrifera Marsh. was the dominant tree species in seed rain in the partial cutting treatments. However, in the second post-harvest year on clear cut sites sedges and grasses increased from less than 1 to 14% of seed rain. The results suggest that predominantly hardwood stands with prolific understory vegetation will initially develop on the treated sites, with a variable, but depleted conifer content.Key words: boreal mixedwood forest, natural regeneration, seed rain, seed bank, succession, vegetative propagation.


Sign in / Sign up

Export Citation Format

Share Document