scholarly journals Regional genetic diversity in circadian period in Boechera stricta populations is high relative to the global range of diversity in Arabidopsis

Author(s):  
Robby McMinn ◽  
Matti Salmela ◽  
Cynthia Weinig

Circadian clocks manifest adaptations to predictable 24-h fluctuations in the exogenous environment, but it has yet to be determined why the endogenous circadian period length in the wild varies genetically around the hypothesized optimum of 24 h. We quantified genetic variation in circadian period in leaf movement in 30 natural populations of the Arabidopsis relative Boechera stricta sampled within only 1° of latitude but across an elevational gradient spanning 2460−3300 m in the Rocky Mountains. Measuring over 3800 plants from 473 maternal families (7−20 per population), we found genetic variation that was of similar magnitude among vs. within populations, with population means varying between 21.9−24.9 h and maternal family means within populations varying by up to ~6 h. After statistically factoring out spatial autocorrelation at the habitat extremes, we found that elevation explained a significant proportion of genetic variation in circadian period such that higher-elevation populations had shorter mean period lengths and less within-population variation. Environmental data indicate that these spatial trends could be related to steep regional climatic gradients in temperature, precipitation, and their intra-annual variability. Our findings provide evidence that spatially fine-grained environmental heterogeneity contributes to naturally occurring genetic diversity in circadian traits in wild populations.

Author(s):  
Michelle L. Davis ◽  
Carl Barker ◽  
Ian Powell ◽  
Keith Porter ◽  
Paul Ashton

Abstract The Marsh Fritillary butterfly (Euphydryas aurinia) is a Eurasian species which has suffered significant reductions in occurrence and abundance over the past century, particularly across the western side of its range, due to agricultural intensification and habitat loss. This loss has been particularly severe in the UK with extensive localised extinctions. Following sympathetic management, reintroduction was undertaken at four Cumbria (northern UK) sites in 2007 with stock from a captive admixture population descended from Cumbrian and Scottish founders. Annual population monitoring of the reintroductions was undertaken. Nine years post-reintroduction, the level of population genetic variation was assessed using microsatellites. Variation in historical Cumbrian samples was determined using museum samples and Scottish samples from current populations were assayed to characterise natural population variation. Half of the Scottish sites also served as indicators of the alleles present in the founder populations. The genetic contribution of the founder populations allied to population size data allowed patterns of genetic variation to be modelled. Alleles from Cumbrian and Scottish founders are present in the reintroduced populations. The four sites have levels of variation akin to natural populations and exhibit differentiation as predicted by statistical modelling and comparable with natural populations. This suggests that reintroduction following captive breeding can produce self-sustaining populations with natural levels of genetic diversity. These populations appear to be undergoing the same evolutionary dynamics with bottlenecks and drift as natural populations. Implications for insect conservation Reintroduction of captive bred individuals is a viable strategy for producing populations with natural levels of genetic diversity and evolutionary dynamics. Hybridisation of populations on the brink of extinction with those thriving can preserve some of the genetic distinctiveness of the declining population.


2019 ◽  
Vol 36 (10) ◽  
pp. 2358-2374
Author(s):  
Nicolas Alcala ◽  
Amy Goldberg ◽  
Uma Ramakrishnan ◽  
Noah A Rosenberg

Abstract Natural populations display a variety of spatial arrangements, each potentially with a distinctive impact on genetic diversity and genetic differentiation among subpopulations. Although the spatial arrangement of populations can lead to intricate migration networks, theoretical developments have focused mainly on a small subset of such networks, emphasizing the island-migration and stepping-stone models. In this study, we investigate all small network motifs: the set of all possible migration networks among populations subdivided into at most four subpopulations. For each motif, we use coalescent theory to derive expectations for three quantities that describe genetic variation: nucleotide diversity, FST, and half-time to equilibrium diversity. We describe the impact of network properties on these quantities, finding that motifs with a high mean node degree have the largest nucleotide diversity and the longest time to equilibrium, whereas motifs with low density have the largest FST. In addition, we show that the motifs whose pattern of variation is most strongly influenced by loss of a connection or a subpopulation are those that can be split easily into disconnected components. We illustrate our results using two example data sets—sky island birds of genus Sholicola and Indian tigers—identifying disturbance scenarios that produce the greatest reduction in genetic diversity; for tigers, we also compare the benefits of two assisted gene flow scenarios. Our results have consequences for understanding the effect of geography on genetic diversity, and they can assist in designing strategies to alter population migration networks toward maximizing genetic variation in the context of conservation of endangered species.


2020 ◽  
Vol 13 (2) ◽  
pp. 59-67
Author(s):  
Ryan A. Thum ◽  
Gregory M. Chorak ◽  
Raymond M. Newman ◽  
Jasmine A. Eltawely ◽  
Jo Latimore ◽  
...  

AbstractPopulation genetic studies of within- and among-population genetic variability are still lacking for managed submerged aquatic plant species, and such studies could provide important information for managers. For example, the extent of within-population genetic variation may influence the potential for managed populations to locally adapt to environmental conditions and control tactics. Similarly, among-population variation may influence whether specific control tactics work equally effectively in different locations. In the case of invasive Eurasian watermilfoil (Myriophyllum spicatum L.), including interspecific hybrids with native northern watermilfoil (Myriophyllum sibiricum Kom.), managers recognize that there is genetic variation for growth and herbicide response. However, it is unclear how much overall genetic variation there is, and how it is structured within and among populations. Here, we studied patterns of within- and among-lake genetic variation in 41 lakes in Michigan and 62 lakes in Minnesota using microsatellite markers. We found that within-lake genetic diversity was generally low, and among-lake genetic diversity was relatively high. However, some lakes were genetically diverse, and some genotypes were shared across multiple lakes. For genetically diverse lakes, managers should explicitly recognize the potential for genotypes to differ in control response and should account for this in monitoring and efficacy evaluation and using pretreatment herbicide screens to predict efficacy. Similarly, managers should consider differences in genetic composition among lakes as a source of variation in the growth and herbicide response of lakes with similar control tactics. Finally, laboratory or field information on control efficacy from one lake may be applied to other lakes where genotypes are shared among lakes.


Parasitology ◽  
2002 ◽  
Vol 125 (7) ◽  
pp. S51-S59 ◽  
Author(s):  
J. CURTIS ◽  
R. E. SORENSEN ◽  
D. J. MINCHELLA

Blood flukes in the genus Schistosoma are important human parasites in tropical regions. A substantial amount of genetic diversity has been described in populations of these parasites using molecular markers. We first consider the extent of genetic variation found in Schistosoma mansoni and some factors that may be contributing to this variation. Recently, though, attempts have been made to analyze not only the genetic diversity but how that diversity is partitioned within natural populations of schistosomes. Studies with non-allelic molecular markers (e.g. RAPDs and mtVNTRs) have indicated that schistosome populations exhibit varying levels of gene flow among component subpopulations. The recent characterization of microsatellite markers for S. mansoni provided an opportunity to study schistosome population structure within a population of schistosomes from a single Brazilian village using allelic markers. Whereas the detection of population structure depends strongly on the type of analysis with a mitochondrial marker, analyses with a set of seven microsatellite loci consistently revealed moderate genetic differentiation when village boroughs were used to define parasite subpopulations and greater subdivision when human hosts defined subpopulations. Finally, we discuss the implications that such strong population structure might have on schistosome epidemiology.


2010 ◽  
Vol 8 (2) ◽  
pp. 171-181 ◽  
Author(s):  
C. C. M. van de Wiel ◽  
T. Sretenović Rajičić ◽  
R. van Treuren ◽  
K. J. Dehmer ◽  
C. G. van der Linden ◽  
...  

Genetic variation in Lactuca serriola, the closest wild relative of cultivated lettuce, was studied across Europe from the Czech Republic to the United Kingdom, using three molecular marker systems, simple sequence repeat (SSR, microsatellites), AFLP and nucleotide-binding site (NBS) profiling. The ‘functional’ marker system NBS profiling, targeting disease resistance genes of the NBS/LRR family, did not show marked differences in genetic diversity parameters to the other systems. The autogamy of the species resulted in low observed heterozygosity and high population differentiation. Intra-population variation ranged from complete homogeneity to nearly complete heterogeneity. The highest genetic diversity was found in central Europe. The SSR results were compared to SSR variation screened earlier in the lettuce collection of the Centre for Genetic Resources, the Netherlands (CGN). In the UK, practically only a single SSR genotype was found. This genotype together with a few other common SSR genotypes comprised a large part of the plants sampled on the continent. Among the ten most frequent SSR genotypes observed, eight were already present in the CGN collection. Overall, the CGN collection appears to already have a fair representation of genetic variation from NW Europe. The results are discussed in relation to sampling strategies for improving genebank collections of crop wild relatives.


2014 ◽  
Vol 153 (6) ◽  
pp. 1006-1016 ◽  
Author(s):  
M. NEJI ◽  
F. GEUNA ◽  
W. TAAMALLI ◽  
Y. IBRAHIM ◽  
M. SMIDA ◽  
...  

SUMMARYBrachypodium hybridum belongs to the Poaceae grass subfamily. It has a close genetic relationship with temperate cereal crops, which means that it can be used as a model for temperate cereal and grass crops. In order to improve knowledge on the genetic diversity of this species, 145 lines of B. hybridum representative of nine populations and all the ecoregions of Tunisia were characterized on the basis of 18 morpho-phenologic features. The results show a considerable variation between populations and ecoregions in all traits studied. Variation was relatively higher for reproductive than vegetative traits. The majority of traits showed very low to high heritability with low border value for average length of spikelet (ALS) and an average value of 0·64. It is noticeable that high values of heritability were observed for most vegetative descriptors, with low values for reproductive ones. Differentiation between populations (QST) varied from 0·02 for ALS to 0·78 for average length of leaves with a mean value across traits of 0·4, which confirms the wide intra-population variation in Tunisian natural population of B. hybridum. Pairwise QST showed that the greatest differentiation among populations was registered between Ain Drahem and Jbel Zaghouan and the smallest between Haouria and Raoued. Overall, the Ain Draham population showed the largest differentiation from the rest of the populations. To infer the effect of geographic distribution of the species, a Mantel test was applied between observed pairwise differentiation and geographic distance between populations and between ecoregions: the results show a positive, but not significant, relationship. In addition a significant negative relationship was found between phenotypic diversity and altitude, indicating that genetic diversity decreased with increasing altitude. Taken together, the high levels of intra-population variation and the lack of correlation between genetic differentiation and geographic distribution suggest a potentially important rate of long-distance seed dispersal and confirm the role played by natural selection in the population structure of Tunisian natural populations of B. hybridum.


1996 ◽  
Vol 26 (8) ◽  
pp. 1454-1462 ◽  
Author(s):  
Naoki Tani ◽  
Nobuhiro Tomaru ◽  
Masayuki Araki ◽  
Kihachiro Ohba

Japanese stone pine (Pinuspumila Regel) is a dominant species characteristic of alpine zones of high mountains. Eighteen natural populations of P. pumila were studied in an effort to determine the extent and distribution of genetic diversity. The extent of genetic diversity within this species was high (HT = 0.271), and the genetic differentiation among populations was also high (GST = 0.170) compared with those of other conifers. In previous studies of P. pumila in Russia, the genetic variation within the species was also high, but the genetic differentiation among populations was low. We infer that this difference originates from differences in geographic distribution and ecological differences between the two countries. The genetic variation within each population tended, as a whole, to be smaller within marginal southern populations than within northern populations. Genetic relationships among populations reflect the geographic locations, as shown by unweighted pair-group method with arithmetic means and neighbor-joining phylogenetic trees.


1995 ◽  
Vol 25 (12) ◽  
pp. 2010-2021 ◽  
Author(s):  
Chang-Yi Xie ◽  
Cheng C. Ying

The genetic architecture and adaptive landscape of interior lodgepole pine (Pinuscontorta ssp. latifolia Engelm. ex S. Wats.) in Canada were investigated in a provenance–family plantation located in central British Columbia. Fifty-three natural populations were sampled from three geographic regions covering the entire Canadian range, and their performance in growth and survival was recorded periodically over 20 years. Test results indicate that genetic variation among regions and among populations within regions was highly significant in all the traits investigated and accounted for, respectively, 53% and 41% of the total genetic variation in growth and 41% and 54% in survival. Within-population variation was also significant in growth but not in survival. Interior lodgepole pine in the central region demonstrated less genetic variation than in the northern and southern regions at both the population and family levels. In addition, the proportion of genetic variation associated with population was lower in the central region than in the other regions. Population differentiation in both growth and survival showed discernible elevational and geographic patterns. Regression models describing these adaptive patterns accounted for more than 80% of the among-population variation, and their veracity was verified with independent data. Populations of northern, coastal–interior transition, and high-elevation origin tended to have smaller trees with higher mortality. However, the patterns were not linear but differed in slope and (or) direction among regions. The adaptedness of populations tended to decrease as they were farther away from their origin, with a few exceptions displaying broad adaptation across more than 3° of latitude. As the test proceeded, population differentiation became more evident and adaptive clines became steeper. Some practical implications of these findings have been discussed.


2018 ◽  
Vol 56 (3) ◽  
pp. 275
Author(s):  
Tran Thi Lieu ◽  
Dinh Thi Phong ◽  
Vu Thi Thu Hien

Keteleeria evelyniana Mast. is a big softwood species with high economic values. Therefore, the number of these trees are rapidly decreasing due to rampant exploitation as well as its habitat loss and recently, the species is considered vulnerablein Vietnam. In this study, we assessed the genetic variation among seventy K. evelyniana samples of three natural populations in Lam Dong, Dak Lak and Kon Tum using 16 microsatellite markers. The results showed that thirteen markers were polymorphic. A total 39 DNA fragments were amplified, among them, thirty – five were polymorphic (accounting for 89.74%). Among studied populations, the level of genetic diversity at Lam Dong (Na = 2.063; Ne = 1.730; Ap = 0.375; I = 0.558; Ho = 0.459 and He = 0.367) was the highest. Analysis of molecular variance (AMOVA) showed that the total level of molecular changes between populations was 34.65% and between individuals in the same population was 65.35%. Private alleles (Ap) and inbreeding values (Fis) of K. evelyniana species were founded of all three populations in Lam Dong, Dak Lak and Kon Tum (0.375 and -0.234; 0.188 and -0.065; 0.063 and -0.047, respectively). The gene flow (Nm) also occurred among the K. evelyniana populations with the average of Nm = 5.423. A dendrogram (UPGMA) constructed based on the similarity matrix of 70 K. evelyniana samples divided into two main groups with their genetic similarity coefficient ranged from 76.5% (Ke26 and Ke44) to 99% (Ke23 and Ke25). The obtained results indicated the importance of conserving the genetic resources of K. evelyniana species in Tay Nguyen.


2018 ◽  
Author(s):  
Imroze Khan ◽  
Arun Prakash ◽  
Deepa Agashe

AbstractIn many insects, individuals primed with low doses of pathogens live longer after being exposed to the same pathogen later in life. Yet, our understanding of the evolutionary and ecological history of priming of immune response in natural insect populations is limited. Previous work demonstrated population-, sex- and- stage specific variation in the survival benefit of priming response in flour beetles (Tribolium castaneum) infected with their natural pathogenBacillus thuringiensis. However, the evolutionary forces responsible for this natural variation remained unclear. Here, we tested whether the strength of the priming response (measured as the survival benefit after priming and subsequent infection relative to unprimed controls) was associated with multiple fitness parameters across 10 flour beetle populations. Our results suggest two major selective pressures that may explain the observed inter-population variation in priming: (A) Basal pathogen susceptibility – populations that were more susceptible to infection produced a stronger priming response, and (B) Reproductive success – populations where primed females produced more offspring had lower survival benefit, suggesting a trade-off between priming response and reproduction. Our work is the first empirical demonstration of multiple selective pressures that may govern the adaptive evolution of immune priming in the wild. We hope that this motivates further experiments to establish the role of pathogen-imposed selection and fitness costs in the evolution of priming in natural insect populations.


Sign in / Sign up

Export Citation Format

Share Document