scholarly journals Synthesis of Cuprous Oxide Nano Cubes and Platelets Using Both Electrodes of Copper

Author(s):  
Danial Ahmad ◽  
Fayaz Hussain ◽  
Humair Siddiqui ◽  
Muhammad Yasir

Cu2O (Cuprous Oxide) is usually produced using expensive electrodes such as platinum, graphite, etc. In the present study, it is shown that Cu2O nanostructures can be synthesized by electrolysis using copper as both anode and cathode. In the present study, the effect of electrolyte pH on the morphology of the Cu2O nanostructures was studied. For this, the copper electrodes of 99.99% purity with 3x3x0.3 mm dimensions were dipped in the electrolytes of simple distilled and double distilled water and connected with the external power source. The synthesized products were analyzed using SEM (Scanning Electron Microscope), EDS (Energy Dispersive Spectroscope) and UV spectroscope. Results showed that Cu2O nanostructures of 67 and 150 nm size were developed when the pH of electrolyte was 6.4 and 5.7 respectively, otherwise not. From the course of experiments conducted in this work it is noted that pH play vital role in the production of Cu2O nanoparticles using simple electrolysis technique.

The Analyst ◽  
2015 ◽  
Vol 140 (3) ◽  
pp. 701-705
Author(s):  
Chunyu Li ◽  
Jian Xu ◽  
Bo Ma

Serial addition of reagents with controlled volumes is performed using a glass fiber-induced droplet coalescence method without the requirement for an external power source.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Reza Maram ◽  
James Van Howe ◽  
Ming Li ◽  
José Azaña

Abstract Amplification of signal intensity is essential for initiating physical processes, diagnostics, sensing, communications and measurement. During traditional amplification, the signal is amplified by multiplying the signal carriers through an active gain process, requiring the use of an external power source. In addition, the signal is degraded by noise and distortions that typically accompany active gain processes. We show noiseless intensity amplification of repetitive optical pulse waveforms with gain from 2 to ~20 without using active gain. The proposed method uses a dispersion-induced temporal self-imaging (Talbot) effect to redistribute and coherently accumulate energy of the original repetitive waveforms into fewer replica waveforms. In addition, we show how our passive amplifier performs a real-time average of the wave-train to reduce its original noise fluctuation, as well as enhances the extinction ratio of pulses to stand above the noise floor. Our technique is applicable to repetitive waveforms in any spectral region or wave system.


Nanoscale ◽  
2017 ◽  
Vol 9 (47) ◽  
pp. 18579-18583 ◽  
Author(s):  
L. Liu ◽  
G. H. Li ◽  
Y. Wang ◽  
Y. Y. Wang ◽  
T. Li ◽  
...  

A self-powered gas sensor activated by visible light which can detect trace concentrations of gas molecules without an external power source.


Author(s):  
Robin Chin ◽  
Elizabeth T. Hsiao-Wecksler ◽  
Eric Loth ◽  
Andrew Alleyne ◽  
Scott Manwaring ◽  
...  

In this paper, we present a novel ankle-foot-orthosis (AFO) design that controls ankle motion by providing a plantarflexion stop with free dorsiflexion during gait. The biomechanical controls are accomplished with a unique application of a cam-follower design that uses pneumatic power harvested via an air bellow embedded into the insole of the AFO (Figure 1). This portable design is self-contained and does not require any external power source to provide for the plantarflexion stop locking mechanism. It is the first step in a series of untethered fluid-powered orthotic devices.


2019 ◽  
Author(s):  
Gaurav Byagathvalli ◽  
Aaron F. Pomerantz ◽  
Soham Sinha ◽  
Janet Standeven ◽  
M. Saad Bhamla

The centrifuge is an essential tool for many aspects of research and medical diagnostics. However, conventional centrifuges are often inaccessible outside of conventional laboratory settings, such as remote field sites, require a constant external power source, and can be prohibitively costly in resource-limited settings and STEM-focused programs. Here we present the 3D-Fuge, a 3D-printed hand-powered centrifuge, as a novel alternative to standard benchtop centrifuges. Based on the design principles of a paper-based centrifuge, this 3D-printed instrument increases the volume capacity to 2 mL and can reach hand-powered centrifugation speeds up to 6,000 rpm. The 3D-Fuge devices presented here are capable of centrifugation of a wide variety of different solutions such as spinning down samples for biomarker applications and performing nucleotide extractions as part of a portable molecular lab setup. We introduce the design and proof-of-principle trials that demonstrate the utility of low-cost 3D printed centrifuges for use in remote and educational settings.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Linglin Zhou ◽  
Di Liu ◽  
Li Liu ◽  
Lixia He ◽  
Xia Cao ◽  
...  

Electrochemistry, one of the most important research and production technology, has been widely applicated in various fields. However, the requirement of external power source is a major challenge to its development. To solve this issue, developing self-powered electrochemical system (SPES) that can work by collecting energy from the environment is highly desired. The invention of triboelectric nanogenerator (TENG), which can transform mechanical energy into electricity, is a promising approach to build SPES by integrating with electrochemistry. In this view, the latest representative achievements of SPES based on TENG are comprehensively reviewed. By harvesting various mechanical energy, five SPESs are built, including electrochemical pollutants treatment, electrochemical synthesis, electrochemical sensor, electrochromic reaction, and anticorrosion system, according to the application domain. Additionally, the perspective for promoting the development of SPES is discussed.


2020 ◽  
Vol 15 (2) ◽  
pp. 179-183
Author(s):  
Rongxin Guan ◽  
Ziqi Wang ◽  
Xinchao Gao ◽  
Mailun Shen ◽  
Xihong Wang ◽  
...  

Real-time monitoring of the position and duration of the snowboarder's grab in the air plays an very important role in scientifically improving the stability and innovation of the movement. Meanwhile, it also provides accurate scientific basis and judgment for the judges to identify the movement in the competition. By using four-needle ZnO nanowires combined with ordinary textile fabrics, a flexible device that can be attached to skis has been created. The device could output piezoelectric signals (working without external power source) served as both power source and sensing signal. Based on this, a snowboard has been modified to monitor the contact position and duration, when any touch or grab occurs on the snowboard. Undeniably, this work has created a new and more scientific monitoring system for snowboarding competitions and training. In addition, it's provide a viable method to promote the directions of sport competitions and equipment with constantly updating portable equipment.


Sign in / Sign up

Export Citation Format

Share Document