scholarly journals Aspects regarding particle size distribution and energy consumption when grinding husked rice seeds

Author(s):  
Gheorghe Voicu ◽  
Gabriel-Alexandru Constantin ◽  
Elena-Madalina Stefan ◽  
Paula Tudor ◽  
Mariana Gabriela Munteanu
2016 ◽  
Vol 70 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Djuro Vukmirovic ◽  
Jovanka Levic ◽  
Aleksandar Fistes ◽  
Radmilo Colovic ◽  
Tea Brlek ◽  
...  

In recent years there is an emerging trend of coarse grinding of cereals in production of poultry feed due to positive influence of coarse particles on poultry digestive system. Influence of grinding method (hammer mill vs. roller mill) and grinding intensity of corn (coarseness of grinding) on mill specific energy consumption and pellet quality was investigated. By decreasing grinding intensity of corn (coarser grinding), specific energy consumption of both hammer mill and roller mill was significantly decreased (p < 0.05). When comparing similar grinding intensities on hammer mill and roller mill (similar geometric mean diameter or similar particle size distribution), specific energy consumption was higher for the hammer mill. Pellet quality decreased with coarser grinding on hammer mill but, however, this effect was not observed for the roller mill. Generally, pellet quality was better when roller mill was used. It can be concluded that significant energy savings could be achieved by coarser grinding of corn before pelleting and by using roller mill instead of hammer mill. From the aspect of pellet quality, if coarser grinding is applied it is better to use roller mill, concerning that more uniform particle size distribution of corn ground on roller mill probably results in more uniform particle size distribution in pellets and this provides better pellet quality.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Siyi Luo ◽  
Yangmin Zhou ◽  
Chuijie Yi ◽  
Yin Luo ◽  
Jie Fu

Recently, a novel biomass pulverization technology was proposed by our group. In this paper, further detailed studies of this technology were carried out. The effects of feed moisture and crusher operational parameters (rotor speed and blades gap) on product particle size distribution and energy consumption were investigated. The results showed that higher rotor speed and smaller blades gap could improve the hit probability between blades and materials and enhance the impacting and grinding effects to generate finer products, however, resulting in the increase of energy consumption. Under dry conditions finer particles were much more easily achieved, and there was a tendency for the specific energy to increase with increasing feed moisture. Therefore, it is necessary for the raw biomass material to be dried before pulverization.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 581
Author(s):  
Claudio Leiva ◽  
Claudio Acuña ◽  
Diego Castillo

Online measurement of particle size distribution in the crushing process is critical to reduce particle obstruction and to reduce energy consumption. Nevertheless, commercial systems to determine size distribution do not accurately identify large particles (20–250 mm), leading to particle obstruction, increasing energy consumption, and reducing equipment availability. To solve this problem, an online sensor prototype was designed, implemented, and validated in a copper ore plant. The sensor is based on 2D images and specific detection algorithms. The system consists of a camera (1024p) mounted on the conveyor belt and image processing software, which improves the detection of large particle edges. The algorithms determine the geometry of each particle, from a sequence of digital photographs. For the development of the software, noise reduction algorithms were evaluated and selected, and a routine was designed to incorporate morphological mathematics (erosion, dilation, opening, lock) and segmentation algorithms (Roberts, Prewitt, Sobel, Laplacian–Gaussian, Canny, watershed, geodesic transform). The software was implemented (in MatLab Image Processing Toolbox) based on the 3D equivalent diameter (using major and minor axes, assuming an oblate spheroid). The size distribution adjusted to the Rosin Rammler function in the major axis. To test the sensor capabilities, laboratory images were used, where the results show a precision of 5% in Rosin Rambler model fitting. To validate the large particle detection algorithms, a pilot test was implemented in a large mining company in Chile. The accuracy of large particle detection was 60% to 67% depending on the crushing stage. In conclusion, it is shown that the prototype and software allow online measurement of large particle sizes, which provides useful information for screening equipment maintenance and control of crushers’ open size setting, reducing the obstruction risk and increasing operational availability.


Minerals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 527 ◽  
Author(s):  
Caibin Wu ◽  
Ningning Liao ◽  
Guiming Shi ◽  
Liangliang Zhu

The grinding performance of hexagon grinding media particles has been compared with that of cylpebs grinding media particles. A batch grinding test was conducted using equal masses of hexagons and cylpebs. The particle size distribution and energy consumption during grinding of the ground product were analyzed, and the relationships among the specific surface area, bulk density, energy consumption, and t10 value are discussed. Under the same grinding conditions, the grinding capacity of hexagons was inferior to that of cylpebs. However, as the particle size of the feed became finer, the grinding effect of hexagons became more apparent. At the same time, the qualified particles content in the ground product was higher when using hexagons than when using cylpebs. The relationship between the specific surface area and energy consumption during grinding was consistent with the regular pattern of grinding fineness and energy consumption. In addition, the bulk density of minerals decreases with an increase in grinding energy. The same conclusion was obtained when −0.425 mm tungsten ore was used as a sample for validation. The flotation experiment result has carried out that hexagons as grinding media have a better flotation indicator than cylpebs in the same grinding fineness. It is demonstrated that although the grinding capacity of hexagons is inferior to that of cylpebs, less overgrinding occurs when using hexagons than when using cylpebs. For tungsten ore grinding, hexagons act as a finer grinding media than cylpebs.


2013 ◽  
Vol 291-294 ◽  
pp. 2710-2714
Author(s):  
Jian Yun Bai ◽  
Xiang Jie Kong ◽  
Li Hong Liu

This paper contraposes the desulfurizer preparation system of Shanxi certain coal-fired power plant existing some problems, which contained too small paticle size of desulfurizer , unreasonable distribution, too low production-to-energy consumption ratio, too weak reliability and so on, and we implemented transformation and optimization scheme to the system, and we transformed the original a set of system into two sets of system. After transforming the system, the particle size of desulfurizer turned larger, and the particle size distribution turned more reasonable, and the production-to-energy consumption ratio increased more than 70%, in additon, reliability of the system turned more stronger.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qing Yu ◽  
Dexin Ding ◽  
Wenguang Chen ◽  
Nan Hu ◽  
Lingling Wu ◽  
...  

The influence of microwave pretreatment on grindability of lead-zinc ore was studied through comparison analysis on the changes of particle size distribution, percentage of below 0.074 mm, energy consumption, and other indexes of grinding products before and after microwave pretreatment in the ball milling process. The results showed that the grindability of lead-zinc ore was improved obviously by microwave pretreatment. The particle size distribution curve of the grinding products was obviously higher than that of the samples without microwave irradiation. The yield of size fraction below 0.074 mm was also improved in a certain degree. Pulsed microwave irradiation was more effective than continuous microwave irradiation when other microwave parameters were consistent. The comprehensive energy consumption of lead-zinc ore pretreated by different microwave parameters was lower than that without microwave irradiation under the same grinding fineness. The total energy consumption was down by 30.1% when irradiated for 15 s at 7 kW power, and it was lower than that without microwave irradiated. The results showed that pulsed microwave pretreatment was more effective in reducing the comprehensive energy consumption of grinding process for lead-zinc ore. And water quenching after microwave irradiation can improve the grindability and reduce the energy consumption of grinding for lead-zinc ore.


Sign in / Sign up

Export Citation Format

Share Document