scholarly journals Impact of forest soil enrichment with nitrogen fertilizer on throughfall and soil water chemical properties

2019 ◽  
Author(s):  
Ilze Karklina ◽  
◽  
Jelena Stola ◽  
2020 ◽  
Author(s):  
Ilze Karklina ◽  
◽  
Zaiga Anna Zvaigzne ◽  
Jelena Stola ◽  
◽  
...  

Enhanced forest growth may respond to demand of woody resources and contribute to the climate change mitigation. Forest soil treatment with fertilizers, as well as drainage and thinning enhance forest growth. The analysis of needles is an established method in forest science to identify the nutrient status in the forest stand and need for forest soil enrichment with fertilizers. The aim of this research is to estimate the efficiency of forest soil enrichment with wood ash and ammonium nitrate in order to eliminate nutrient deficiency in forest stands. Forest soil was enriched with wood ash fertilizer or ammonium nitrate in 2016–2017. The current year needles were collected from fertilized and control plots, from three trees in each plot. The samples were collected in the period 2018–2019. Total nitrogen (g kg-1), calcium (g kg-1), magnesium (g kg-1), and potassium (g kg-1) were analyzed in the collected samples. The chemical properties of collected needles were compared at the individual object level to estimate the impact of fertilizer on forest stand. A statistically significant increase in the concentrations of potassium and phosphorus was detected in some plots treated with wood ash and ammonium nitrate. In addition, a correlation analysis conducted between the variables of chemical properties of needles and soil showed few significant correlations between nutrient content in needles and in soil samples.


2013 ◽  
Vol 22 (4) ◽  
pp. 515 ◽  
Author(s):  
Naama Tessler ◽  
Lea Wittenberg ◽  
Noam Greenbaum

Variations in forest fires regime affect: (1) the natural patterns of community structure and vegetation; (2) the physico-chemical properties of soils and consequently (3) runoff, erosion and sediment yield. In recent decades the Mediterranean ecosystem of Mount Carmel, north-western Israel, is subjected to an increasing number of forest fires, thus, the objectives of the study were to evaluate the long-term effects of single and recurrent fires on soil water repellency (WR) and organic matter (OM) content. Water repellency was studied by applying water drop penetration time (WDPT) tests at sites burnt by single-fire, two fires, three fires and unburnt control sites. Water repellency in the burnt sites was significantly lower than in the unburnt control sites, and the soil maintained its wettability for more than 2 decades, whereas after recurrent fires, the rehabilitation was more complicated and protracted. The OM content was significantly lower after recurrent than after a single fire, causing a clear proportional decrease in WR. The rehabilitation of WR to natural values is highly dependent on restoration of organic matter and revegetation. Recurrent fires may cause a delay in recovery and reduced productivity of the soil for a long period.


2012 ◽  
Vol 33 (5) ◽  
pp. 1745-1754
Author(s):  
Reges Heinrichs ◽  
Cecilio V Soares Filho ◽  
Carlos Alberto Crociolli ◽  
Paulo Alexandre M de Figueiredo ◽  
Viviane Murer Fruchi ◽  
...  

2019 ◽  
Vol 8 (3) ◽  
pp. 23
Author(s):  
Maru Ali ◽  
Ahmed Osumanu Haruna ◽  
Nik Muhamad Abd Majid ◽  
Walter Charles Primus ◽  
Nathaniel Maikol ◽  
...  

Although urea use in agriculture is on the increase, increase in pH at soil microsite due to urea hydrolysis which causes ammonia emission can reduce N use efficiency. Among the interventions used to mitigate ammonia loss include urease inhibitors, clinoptilolite zeolite, coated urea, and biochar but with little attention to the use of soil water levels to control ammonia volatilization. The objective of this study was to determine the effects of soil water levels on ammonia volatilization from soils with and without chicken litter biochar. Dry soils with and without chicken litter biochar were subjected to 0%, 25% 50%, 75%, 100%, and 125% soil water. There was no urea hydrolysis in the soil without water. Chicken litter biochar as soil amendment effectively mitigated ammonia loss at 1% to 32% and 80% to 115% field capacity. However, urea used on soil only showed lower ammonia loss at 33% to 79% and 116% to 125% field capacity compared with the soils with chicken litter biochar. At 50% field capacity ammonia loss was high in soils with and without chicken litter biochar. Although chicken litter biochar is reputed for improving soil chemical properties, water levels in this present study affected soil chemical properties differently. Fifty percent field capacity, significantly reduced soil chemical properties. These findings suggest that timely application of urea at the right field capacity can mitigate ammonia emission. Therefore, whether soils are amended with or without chicken litter biochar, urea application should be avoided at 50% field capacity especially in irrigated crops.


2014 ◽  
Vol 56 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Ewa Błońska ◽  
Jarosław Lasota

Abstract The aim of this study was to assess the possibility of using biological and biochemical parameters in the evaluation of forest soil quality and changes caused by land use. The study attempted to determine a relationship between the enzymatic activity of soil, the number of earthworms and soil physico-chemical properties. The study was carried out in central Poland in adjoining Forest Districts (Przedbórz and Smardzewice). In soil samples taken from 12 research plots, basic physico-chemical properties, enzyme activity (dehydrogenase, urease) and density and biomass of earthworms were examined. Enzyme activity showed a large diversity within the forest site types studied. The correlations between the activity of the enzymes studied and C/N ratio indicated considerable importance of these enzymes in metabolism of essential elements of organic matter of forest soils. Urease and dehydrogenase activity and earthworm number showed susceptibility to soil pH, which confirmed relationships between enzyme activity and abundance of earthworms and soil pH in H2O and KCl.


Author(s):  
Xiaoqin Tian ◽  
Zhuo Li ◽  
Longchang Wang ◽  
Yifan Wang ◽  
Biao Li ◽  
...  

Reduction of soil fertility and production efficiency resulting from excessive application of chemical fertilizers is universal in rapeseed-growing fields. The main objective of our study was to assess the effects of biochar combined with nitrogen fertilizer reduction on soil aggregate stability and rapeseed yield and to identify the relationship between yield and soil aggregate stability. A two-factor field experiment (2017–2019) was conducted with biochar (0 (C0), 10 (C10), 20 (C20) and 40 t·ha−1 (C40)) and nitrogen fertilizer (180 (N100), 144 (N80) and 108 kg N·ha−1 (N60)). Experimental results indicated that under N100 and N80 treatments, C10 significantly increased the macro-aggregates (R0.25), mean weight diameter (MWD) and geometric mean diameter (GMD) of soil water stable aggregate by 14.28%–15.85%, 14.88%–17.08% and 36.26%–42.22%, respectively, compared with C0. Besides, the overall difference of the soil water-stable aggregate content in 2–5 mm size range among nitrogen treatments was significant under the application of C10, which increased by 17.04%–33.04% compared with C0. Total organic carbon (TOC) in R0.25 of soil mechanical-stable aggregates was basically all increased after biochar application, especially in 0.25–1 mm and 1–2 mm aggregates, and had an increasing trend with biochar increase. C10 significantly increased rapeseed yield by 22.08%–45.65% in 2019, compared with C0. However, the reduction of nitrogen fertilizer reduced the two-year average rapeseed yield, which decreased by 11.67%–31.67% compared with N100. The highest yield of rapeseed was obtained by N100C10 in two consecutive years, which had no statistical difference with N80C10. However, the two-year yields of N80C10 were all higher than those of N100C0 with increase rate of 16.11%, and which would reduce 35.43% nitrogen fertilizer in the case of small yield difference, compared with the highest yield (2.67 t·ha−1) calculated by multi-dimensional nonlinear regression models. The regression analysis indicated R0.25, MWD and GMD had the strong positive associations with rapeseed yield, whereas percentage of aggregate destruction (PAD0.25) had a significant negative correlation with rapeseed yield. This study suggests that the application of biochar into upland purple soil could improve soil structure, increase the content of TOC in macro-aggregates under nitrogen fertilizer reduction as well as replace part of nitrogen fertilizer to achieve relatively high rapeseed yield.


Sign in / Sign up

Export Citation Format

Share Document