scholarly journals Direct Identification of Northern Sage-grouse, Centrocercus urophasianus, Nest Predators Using Remote Sensing Cameras

2003 ◽  
Vol 117 (2) ◽  
pp. 308 ◽  
Author(s):  
Matthew J. Holloran ◽  
Stanley H. Anderson

The status and apparent decline of Sage-grouse (Centrocercus spp.) has been of increasing concern and lower nesting success could be contributing to population declines. Our objective was to directly identify Sage-grouse nest predators. Following visual confirmation of radio-marked Sage-grouse nest establishment in 1997-1999, we installed automatic 35 mm cameras controlled by an active infrared monitor. Of 26 nests monitored by cameras, 22 successfully hatched and four were unsuccessful. American Elk (Cervus canadensis), Badger (Taxidea taxus), and Black-billed Magpie (Pica hudsonia) destroyed three of the four unsuccessful nests, and domestic cattle caused abandonment of the fourth. Richardson’s (Spermophilus richardsonii) and Thirteen-lined Ground Squirrels (S. tridecemlineatus) were recorded at nests, but were not detected in predation.

The Condor ◽  
2005 ◽  
Vol 107 (4) ◽  
pp. 742-752 ◽  
Author(s):  
Matthew J. Holloran ◽  
Stanley H. Anderson

Abstract Degradation of nesting habitat has been proposed as a factor contributing to Greater Sage-Grouse (Centrocercus urophasianus) population declines throughout North America. Delineating suitable nesting habitat across landscapes with relatively contiguous sagebrush cover is difficult but important to identify areas for protection. We used radio-telemetry to locate Greater Sage-Grouse nests in relatively contiguous sagebrush habitats in Wyoming to investigate the spatial arrangement of nests relative to lek and other nest locations. Nest distributions were spatially related to lek location within 3 and 5 km of a lek, and a 5-km buffer included 64% of the nests. There was no relationship between lek size and lek-to-nest distance, suggesting that accurate population trend evaluation might require lek surveys in addition to lek counts. Closest known lek-to-nest distance was greater for successfully hatched compared to destroyed nests, and closely spaced nests tended to experience lower success and have higher probabilities of both nests experiencing the same fate compared to isolated nests, suggesting that a mechanism of enhanced prey detection occurred at higher nest densities. A low probability that a given individual's consecutive-year nest spacing occurred randomly suggested nesting site-area fidelity. Although a grouped pattern of nests occurred within 5 km of a lek, the proportion of nesting females located farther than 5 km could be important for population viability. Managers should limit strategies that negatively influence nesting habitat regardless of lek locations, and preserve adequate amounts of unaltered nesting habitat within treatment boundaries to maintain nest dispersion and provide sites for philopatric individuals.


2014 ◽  
Vol 7 (1) ◽  
pp. 19-29 ◽  
Author(s):  
Robert M. Zink

The greater sage-grouse (Centrocercus urophasianus) was once widespread in western North America but its range has contracted by an uncertain degree owing to anthropogenic and natural causes. Concern over population declines has led to its proposed listing as threatened under the U.S. Endangered Species Act. Detailed genetic and demographic analyses of this species throughout its range are available but heretofore have not been compared. Reduced genetic variability is often taken as a proxy for declining populations, but rarely are there quantitative population estimates with which to compare. I compared published mitochondrial DNA (mtDNA) control region sequences, microsatellite allele frequencies at seven loci, and estimates of numbers of males per lek, number of active leks, percent decline in the best population models, and the probability (P) of Ne < 50 in 30 years and P(Ne < 500) in 100 years, at two spatial scales, 45 local population samples and 16 larger aggregates of samples. When excluding the populations from the Columbia Basin, which show little genetic diversity and are statistical outliers, there were no consistent relationships between estimates of genetic variation and demographic trends across the remainder of the range at either spatial scale. A measure of inbreeding derived from microsatellite data was also not related to population trends. Thus, despite habitat reduction and range fragmentation, the greater sage-grouse does not exhibit expected genetic signatures of declining populations. Possibly, the mtDNA and microsatellite data are insufficiently sensitive to detect population declines that have occurred over the span of a half century. Alternatively, only when populations are reduced to the levels seen in the Columbia Basin will genetic effects be seen, suggesting that the bulk of the range of the greater sage-grouse is not currently in genetic peril.


2020 ◽  
Vol 11 (1) ◽  
pp. 151-163
Author(s):  
Gregory T. Wann ◽  
Clait E. Braun ◽  
Cameron L. Aldridge ◽  
Michael A. Schroeder

Abstract Numerous studies provide estimates of nesting propensity rates (proportion of females attempting to nest at least once in a given year) for greater sage-grouse Centrocercus urophasianus. However, females may initiate nests without being detected during the course of normal research, leading to negatively biased estimates. We evaluated nesting propensity rates (rate of females laying ≥1 egg/y) by examining ovaries from 941 female sage-grouse collected at hunter-check stations in North Park, Colorado, during 1975–1984. Mean rate estimates of nesting propensity were lower for yearlings (0.926, 95% CI = 0.895–0.948) than adults (0.964, 95% CI = 0.945–0.978). We did not attempt to estimate laying rates (number of eggs laid per year) because they were likely unreliable. Nesting success—estimated as the probability of females producing a successful clutch in a given year based on primary feather replacement from hunter-harvested wings—was lower for yearlings (0.398, 95% CI = 0.370–0.427) than adults (0.571, 95% CI = 0.546–0.596). There were more chicks per female produced when nesting propensity rates were high, indicating nesting propensity rates correlate with the number of juveniles in the autumn population. Both nesting propensity rates and nesting success were positively related to precipitation during the lekking and brood-rearing seasons, respectively. Nesting propensity rates were positively related to spring abundance (as measured from annual lek counts), but nesting success was unrelated to spring abundance. A range-wide estimate of an unadjusted, apparent nesting propensity rate available from a previous study was approximately 7% lower than the North Park population. Postovulatory follicles provide a direct source of information on nesting propensity rates estimated from hunter-harvested sage-grouse. These estimated rates may prove useful to gain insights into annual variation of hunted populations' reproductive efforts.


1999 ◽  
Author(s):  
Michael A. Schroeder ◽  
Jessica R. Young ◽  
Clait E. Braun

2021 ◽  
Author(s):  
Mary B. Meyerpeter ◽  
Kade D. Lazenby ◽  
Peter S. Coates ◽  
Mark A. Ricca ◽  
Steven R. Mathews ◽  
...  

2018 ◽  
Vol 200 (1) ◽  
pp. 1-41 ◽  
Author(s):  
Daniel Gibson ◽  
Erik J. Blomberg ◽  
Michael T. Atamian ◽  
Shawn P. Espinosa ◽  
James S. Sedinger

<em>Abstract</em>.—The Neosho madtom <em>Noturus placidus</em> is a small ictalurid formally recognized as a species in 1969 and federally listed as threatened in 1990. What is presented here is an in-depth review of research done on Neosho madtom since it was listed as threatened. The overall goal is to directly address questions put forth in the original recovery plan. Information presented provides a basis for updating the status of and current recovery plan for the Neosho madtom along with guidance as to additional research needed for Neosho madtom recovery efforts to be successful. Currently, Neosho madtoms are found in main stems of the Neosho, Cottonwood, and Spring rivers in Kansas, Missouri, and Oklahoma. These three rivers have been altered by reservoirs, heavy metals contamination, and gravel mining. Effects of these factors were identified as areas of information needed for recovery of the species, along with a better understanding of its reproductive biology and overall ecology. Since the initial recovery plan was written, numerous research efforts have and continue to address these questions through collaborative studies involving a partnership among federal and state agencies, private landowners, and universities. Within the Spring River, Neosho madtom populations are limited by poor habitat quality in the upper section (i.e., upstream of Center Creek) and by heavy metals contamination in the lower. In the Neosho River system, the decrease in Neosho madtom densities downstream of John Redmond Reservoir seems to be related to decreased turbidity and coarser substrate. Other benthic fishes found with the Neosho madtom, such as the channel catfish <em>Ictalurus punctatus</em>, have shown a similar change in density. Neosho mad-tom population declines also have been linked to low-head dams, which result in decreased flow and increased siltation upstream and coarsening of substrate downstream. Furthermore, Neosho madtom reproductive behavior has been shown to be related to environmental cues such as photoperiod, temperature, and water velocity, thereby indicating potential for reservoir release patterns to disrupt reproduction through changes in flow. Research has shown that Neosho madtom populations are limited by different factors in different parts of the species’ geographic range. Additional research is needed on Neosho madtom movement rates among gravel bars, population genetics, aging methods, age distribution within wild populations, growth rates, population viability, effects of predation, and sensitivity to environmental contaminants.


2013 ◽  
Vol 4 (2) ◽  
pp. 386-394 ◽  
Author(s):  
Gifford L. Gillette ◽  
Peter S. Coates ◽  
Steven Petersen ◽  
John P. Romero

Abstract More effective methods for counting greater sage-grouse (Centrocercus urophasianus) are needed to better assess population trends through enumeration or location of new leks. We describe an aerial infrared technique for conducting sage-grouse lek counts and compare this method with conventional ground-based lek count methods. During the breeding period in 2010 and 2011, we surveyed leks from fixed-winged aircraft using cryogenically cooled mid-wave infrared cameras and surveyed the same leks on the same day from the ground following a standard lek count protocol. We did not detect significant differences in lek counts between surveying techniques. These findings suggest that using a cryogenically cooled mid-wave infrared camera from an aerial platform to conduct lek surveys is an effective alternative technique to conventional ground-based methods, but further research is needed. We discuss multiple advantages to aerial infrared surveys, including counting in remote areas, representing greater spatial variation, and increasing the number of counted leks per season. Aerial infrared lek counts may be a valuable wildlife management tool that releases time and resources for other conservation efforts. Opportunities exist for wildlife professionals to refine and apply aerial infrared techniques to wildlife monitoring programs because of the increasing reliability and affordability of this technology.


Sign in / Sign up

Export Citation Format

Share Document