Performance Analysis of IEEE 802.15.4 based Sensor Networks for Large Scale Tree Topology

2017 ◽  
Vol 2 (7) ◽  
pp. 9-13
Author(s):  
Ziyad Khalaf Farej ◽  
Ali Maher Abdul-hameed

This paper evaluates the performance of IEEE 802.15.4 standard Wireless Sensor Network (WSN) in tree topology for large scale applications. The performance of the network is analyzed in terms of number of nodes, packet size and packet interval time (PIT) by using the discreet event OPNET (version 14.5) simulator. Performance investigation started with a packet size of 1408 bit and PIT of 1 sec in order to determine the best network performance, then based on the comparison which has been made among the network performance parameters, it is found that the network performance for tree topology is optimized at 90 nodes number with packet size of 4096 bits when PIT equals 1 sec.

Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1971 ◽  
Author(s):  
Sangrez Khan ◽  
Ahmad Naseem Alvi ◽  
Muhammad Awais Javed ◽  
Byeong-hee Roh ◽  
Jehad Ali

Internet of Things (IoT) is a promising technology that uses wireless sensor networks to enable data collection, monitoring, and transmission from the physical devices to the Internet. Due to its potential large scale usage, efficient routing and Medium Access Control (MAC) techniques are vital to meet various application requirements. Most of the IoT applications need low data rate and low powered wireless transmissions and IEEE 802.15.4 standard is mostly used in this regard which offers superframe structure at the MAC layer. However, for IoT applications where nodes have adaptive data traffic, the standard has some limitations such as bandwidth wastage and latency. In this paper, a new superframe structure is proposed that is backward compatible with the existing parameters of the standard. The proposed superframe overcomes limitations of the standard by fine-tuning its superframe structure and squeezing the size of its contention-free slots. Thus, the proposed superframe adjusts its duty cycle according to the traffic requirements and accommodates more nodes in a superframe structure. The analytical results show that our proposed superframe structure has almost 50% less delay, accommodate more nodes and has better link utilization in a superframe as compared to the IEEE 802.15.4 standard.


wireless sensor network (WSN) is an unmistakable innovation for a long while. In most genuine applications, the immense measure of information assembled utilizing sensors are required to be put away and be made accessible for whenever, anyplace get to. However, WSNs are made out of asset obliged gadgets which absence of abilities to store gigantic lump of information and perform ensuing preparing of the information. WSNs can be increased by cloud condition which offers such administrations. Thus, a Sensor-Cloud structure is imagined in this proposition coordinating remote sensor connect with cloud condition. The coordinated system is appropriate for versatile and unavoidable figuring applications empowering Internet of Things (IoT) and planned to be utilized in genuine applications. Creating countries need proportionate social insurance conveyance answers for serve gigantic populace. This proposition features the issues identified with medicinal services conveyance that might be tended to utilizing the incorporated system. It might be utilized for empowering individuals, networks, medicinal services associations to gather and transmit wellbeing data as and when required so as to improve social insurance administrations for the provincial and urban populace. Inside the IoT empowered structure, few difficulties are recognized for examination. This theory stresses on difficulties including remote sensors and gives specialized answers for these difficulties. WSNs ordinarily work on IEEE 802.15.4 standard utilizing exclusive conventions which includes structure and the board unpredictability when combined with Internet. This postulation furnishes answer for coordinate sensor worldview with cloud condition which depends on


2016 ◽  
Vol 9 (12) ◽  
pp. 383-394
Author(s):  
N. Thirupathi Rao ◽  
U. Nanaji ◽  
Ch. Raj Kumar ◽  
Debnath Bhattacharyya ◽  
Hye-jin Kim

Sign in / Sign up

Export Citation Format

Share Document