scholarly journals Subperiodic trigonometric subsampling: A numerical approach

2017 ◽  
Vol 11 (2) ◽  
pp. 470-483
Author(s):  
Alvise Sommariva ◽  
Marco Vianello

We show that Gauss-Legendre quadrature applied to trigonometric polynomials on subintervals of the period can be competitive with subperiodic trigonometric Gaussian quadrature. For example with intervals corresponding to few angular degrees, relevant for regional scale models on the earth surface, we see a subsampling ratio of one order of magnitude already at moderate trigonometric degrees.

1997 ◽  
Vol 3 (3-4) ◽  
pp. 50-53
Author(s):  
O.D. Fedorovskyi ◽  
◽  
V.I. Kononov ◽  
K.Yu. Sukhanov ◽  
◽  
...  

Author(s):  
Yuuki UCHIDA ◽  
Tomohito ASAKA ◽  
Takashi NONAKA ◽  
Keishi IWASHITA ◽  
Toshiro SUGIMURA

1962 ◽  
Vol 52 (5) ◽  
pp. 1007-1016
Author(s):  
B. Carder ◽  
J. Hefferman ◽  
D. Barnes

abstract Photographic measurements of the earth-surface displacement were made on the gnome event, an underground nuclear detonation near Carlsbad, New Mexico, November 1961. One long range and three short range photo stations were used to provide complementary coverage. Motionless inertia weights were measured against graduated targets rigidly anchored to the surface. The experiment is described in detail including target/weight arrangement, camera specifications, and photo station locations in relation to Surface Zero. Analysis of results from 6 films from close-in stations and one film from the long range station are reported. The peak displacement measured was slightly greater than six feet at a location 106 feet from surface zero.


2011 ◽  
Vol 110-116 ◽  
pp. 13-17
Author(s):  
Anuchit Uchaipichat ◽  
Ekachai Man Koksung

Generally, pile foundation is typically chosen to support heavy structures. However, the developments of expressions to determine the pile capacity is usually based on fully saturated and completely dry conditions. In fact, almost 40 percent of natural soils on the earth surface are in an unsaturated state. Thus, in this paper, an expression for pile capacity in homogeneous unsaturated sand layer is developed. The simulations using developed expression are performed and discussed. Typical results show that the pile capacity and the factor of safety are affected by matric suction. However, the influence of matric suction may be ignored for a long pile.


2016 ◽  
Author(s):  
Rogier Westerhoff ◽  
Paul White ◽  
Zara Rawlinson

Abstract. Large-scale models and satellite data are increasingly used to characterise groundwater and its recharge at the global scale. Although these models have the potential to fill in data gaps and solve trans-boundary issues, they are often neglected in smaller-scale studies, since data are often coarse or uncertain. Large-scale models and satellite data could play a more important role in smaller-scale (i.e., national or regional) studies, if they could be adjusted to fit that scale. In New Zealand, large-scale models and satellite data are not used for groundwater recharge estimation at the national scale, since regional councils (i.e., the water managers) have varying water policy and models are calibrated at the local scale. Also, some regions have many localised ground observations (but poor record coverage), whereas others are data-sparse. Therefore, estimation of recharge is inconsistent at the national scale. This paper presents an approach to apply large-scale, global, models and satellite data to estimate rainfall recharge at the national to regional scale across New Zealand. We present a model, NGRM, that is largely inspired by the global-scale WaterGAP recharge model, but is improved and adjusted using national data. The NGRM model uses MODIS-derived ET and vegetation satellite data, and the available nation-wide datasets on rainfall, elevation, soil and geology. A valuable addition to the recharge estimation is the model uncertainty estimate, based on variance, covariance and sensitivity of all input data components in the model environment. This research shows that, with minor model adjustments and use of improved input data, large-scale models and satellite data can be used to derive rainfall recharge estimates, including their uncertainty, at the smaller scale, i.e., national and regional scale of New Zealand. The estimated New Zealand recharge of the NGRM model compare well to most local and regional lysimeter data and recharge models. The NGRM is therefore assumed to be capable to fill in gaps in data-sparse areas and to create more consistency between datasets from different regions, i.e., to solve trans-boundary issues. This research also shows that smaller-scale recharge studies in New Zealand should include larger boundaries than only a (sub-)aquifer, and preferably the whole catchment. This research points out the need for improved collaboration on the international to national to regional levels to further merge large-scale (global) models to smaller (i.e., national or regional) scales. Future research topics should, collaboratively, focus on: improvement of rainfall-runoff and snowmelt methods; inclusion of river recharge; further improvement of input data (rainfall, evapotranspiration, soil and geology); and the impact of recharge uncertainty in mountainous and irrigated areas.


Sign in / Sign up

Export Citation Format

Share Document