scholarly journals Biological indication of heavy metal pollution in the areas of Donje Vlase and Cerje (southeastern Serbia) using epiphytic lichens

2013 ◽  
Vol 65 (1) ◽  
pp. 151-159 ◽  
Author(s):  
S.S. Stamenkovic ◽  
Tatjana Mitrovic ◽  
V.J. Cvetkovic ◽  
N.S. Krstic ◽  
Rada Baosic ◽  
...  

The performance of two epiphytic lichen species (Evernia prunastri (L.) Ach. and Parmelia sulcata Taylor) as bioindicators of heavy metal pollution in natural areas around the city of Nis (southeastern Serbia) were evaluated. The concentration of 19 heavy metals in lichen samples was measured by inductively coupled plasma-optical emission spectroscopy. For the majority of the elements the concentrations found in Parmelia sulcata Taylor were higher than in Evernia prunastri (L.) Ach. In addition, interspecific differences in heavy metal accumulation between Evernia prunastri (L.) Ach. and Parmelia sulcata Taylor are observed. Parmelia sulcata Taylor showed a tendency to accumulate Fe, Mn, Ni and Ti while Evernia prunastri (L.) Ach. preferentially concentrated Cu on both locations. A clear distinction between lithogenic (Mn-Cu-Ti) and atmospheric elements (Ni-Co-Cr-Ag-Pb-Hg) was achieved by cluster analysis.

1985 ◽  
Vol 7 ◽  
pp. 175-180 ◽  
Author(s):  
S. Landsberger ◽  
R.E. Jervis

Three multi-elemental techniques (neutron activation analysis, proton-induced X-ray emission and inductively coupled plasma-atomic emission spectrometry) are described in terms of their special advantages in determining sulphur and heavy metal pollution in urban snow. Environmental analytical interpretations, including wash-out factors, enrichment factors, inter-elemental correlations, mobilization factors, and toxicity potential, are also discussed.


1985 ◽  
Vol 7 ◽  
pp. 175-180
Author(s):  
S. Landsberger ◽  
R.E. Jervis

Three multi-elemental techniques (neutron activation analysis, proton-induced X-ray emission and inductively coupled plasma-atomic emission spectrometry) are described in terms of their special advantages in determining sulphur and heavy metal pollution in urban snow. Environmental analytical interpretations, including wash-out factors, enrichment factors, inter-elemental correlations, mobilization factors, and toxicity potential, are also discussed.


2013 ◽  
Vol 664 ◽  
pp. 399-402
Author(s):  
Yuan Hua Chen ◽  
Ji Ping Jiang ◽  
Yu Liu ◽  
Li Na Zhang ◽  
Yi Wang

Recently, aquatic pollution of heavy metals has been breaking out with increasing frequency around the world, which puts great threats to ecosystem and human health. However, there are seldom researches on Early Warning/Emergency Response System (EWERS) of heavy metal pollution. In this present study, we propose a logistic structure and function structure of EWERS on the ground of functional requirement of response to river heavy metal pollution. This system includes five subsystems: heavy metal monitoring, contaminant source information management, emergency management, database and authority management subsystems. It can not only predict the process of heavy metal accumulation processes, but also calculate risk degree for given area taking the water function zone into consideration. For those areas where risk is identified as unacceptable, emergency response plan should be created by case base reasoning to achieve reduction hazard in a cost-effective way.


2020 ◽  
Vol 23 (3) ◽  
pp. 299-304
Author(s):  
Andi Bakia Askara ◽  
Fadhliyah Idris ◽  
Risandi Dwirama Putra ◽  
Aditya Hikmat Nugraha

Human activities in coastal areas have the potential to cause heavy metal pollution. The impact of heavy metal pollution causes the accumulation of heavy metals in the body of marine biota, including the Gonggong Snail (S. Canarium). This study aims to analyze the concentration of heavy metals Pb in Gonggong snails in two different characteristics of aquatic ecosystems. Purposive sampling used as a sampling method of Gonggong Snail. The Analysis of heavy metal concentrations from Pb using the ICP (Inductively coupled plasma). The results showed the heavy metal concentration of Pb was 0.427 mg/kg for Malang Rapat Village and 0.71 mg/kg for Tanjung Siambang village. The difference between the two locations possibly due to differences in the aquatic characteristics at the study site. Aktivitas manusia di kawasan pesisir berpotensi menyebabkan terjadinya pencemaran logam berat. Dampak dari pencemaran logam berat dapat menyebabkan terakumulasinya logam berat pada tubuh biota laut, salah satunya yaitu Siput Gonggong (S.Canarium). Penelitian ini bertujuan untuk menganalisis konsentrasi logam berat Pb pada Siput Gonggong yang terdapat pada dua ekosistem perairan yang memiliki karakteristik perairan berbeda. Pengambilan sampel siput gonggong dilakukan dengan cara purposive sampling. Analisis konsentrasi logam berat menggunakan bantuan alat ICP (Inductively coupled plasma). Hasil penelitian menunjukkan bahwa konsentrasi logam berat Pb sebesar 0,427 mg/kg untuk Desa Malang Rapat dan 0,71 mg/kg untuk desa Tanjung Siambang. Terjadi perbedaan antara kedua lokasi kemungkinan dikarnakan adanya perbedaan karakteristik perairan pada lokasi penelitian.


2021 ◽  
Author(s):  
◽  
Liana Cook-Auckram

<p>Heavy metal or metalloids are common pollutants that are discharged into the aquatic environment by a variety of natural and anthropogenic sources, and have the ability to bio- accumulate in the tissues of marine organisms. Fish are among the top consumers in aquatic ecosystems and are widely recognised as bio-indicators for heavy metal pollution. Accumulation of heavy metals is influenced by factors such as species, age, size, and trophic level and can be found in various tissue types, such as muscle and liver tissue. In addition, contaminated fish can pose a threat to human consumers as they can cause acute and chronic disorders.  Estuaries are particularly vulnerable to heavy metal pollution as they are as they are a direct recipient of raw sewage, industrial, residential and farming runoff. Estuaries provide essential habitat for a range of species, including fishes that occupy estuaries permanently or seasonally for breeding. Te Awarua-o-Porirua Harbour (Porirua Harbour) is the largest, and the most significant estuary in the southern North Island of New Zealand. It is a 807 hectare tidal lagoon estuary next to Porirua City and consists of two distinct estuary arms, Onepoto and Pauatahanui. Porirua Harbour once boasted a healthy and diverse ecosystem that supported fishes that are prized by the Ngati Toa as kaimoana. However, heavy metal contamination has become problematic following the introduction of intensive industry and development in the harbour catchment.  The aim of this research was to 1) quantify levels of four heavy metals (Cu, Zn, Pb, and Hg) in the tissue (muscle and liver) of yellow belly flounder (Pātiki, tōtara, Rhombosolea leporina), sand flounder (Pātiki, Rhombosolea plebeia), speckled sole (Peltorhamphus latus), rig shark (Pioke, Makō, Mangō, Mustelus lenticulatus), short-tailed stingray (Whai, Dasyatis brevicaudata), and eagle ray (Whai keo, Myliobatis tenuicaudatus) caught in Porirua Harbour, and look for differences between sexes, tissue types, as well as effects of size and age, 2) examine each fish sampled for general metrics of health (parasite load, skin lesions, etc.) as well as diet, and look for relationships with body burdens of metals, 3) examine maternal offloading of heavy metals from pregnant rig shark to near-term embryos, 4) examine the movement of benthic fishes between the two estuary arms using mark/recapture methods.  To assess heavy metal accumulation and movement in benthic fishes, fish were collected and/or tagged over a 4-month period in 2018 (March-August) across 8 sites in Porirua Harbour. Tagged fish were unable to be recovered so conclusions were left undetermined. Overall, liver tissue had the highest levels of heavy metal concentration, with the expectation of Hg being elevated in the muscle tissue of rig shark. There were significant differences observed for species, fish size, with smaller fishes having higher Cu concentration, and larger fish having higher Hg concentrations. There was little to no relationship observed between Zn and Pb concentrations in this study.  To investigate the role of maternal offloading of heavy metals from maternal rig shark to their near-term embryos, embryos were collected from the uterus of 13 pregnant females and assessed individually for heavy metal (Cu, Zn, Pb, Hg) concentrations in muscle tissue. Overall, there was no relationship for Cu between the amount in embryos and either the maternal concentration or size. However, Zn and Pb concentration in rig shark embryos were positively related with maternal size. Therefore, size explained embryo Zn and Pb concentration in rig shark embryos, and embryo Hg concentrations were explained by maternal concentrations and size, suggesting maternal offloading of Hg might be occurring in rig shark.  The results of this thesis support prior research findings of heavy metal accumulation depending primarily on the tissue type, fish size and is metal and species specific. This research adds to the currently lacking information on heavy metal accumulation in these study species, and will aid the ongoing monitoring of Porirua Harbour by Greater Wellington Regional Council and Porirua City Council.</p>


2021 ◽  
Author(s):  
◽  
Liana Cook-Auckram

<p>Heavy metal or metalloids are common pollutants that are discharged into the aquatic environment by a variety of natural and anthropogenic sources, and have the ability to bio- accumulate in the tissues of marine organisms. Fish are among the top consumers in aquatic ecosystems and are widely recognised as bio-indicators for heavy metal pollution. Accumulation of heavy metals is influenced by factors such as species, age, size, and trophic level and can be found in various tissue types, such as muscle and liver tissue. In addition, contaminated fish can pose a threat to human consumers as they can cause acute and chronic disorders.  Estuaries are particularly vulnerable to heavy metal pollution as they are as they are a direct recipient of raw sewage, industrial, residential and farming runoff. Estuaries provide essential habitat for a range of species, including fishes that occupy estuaries permanently or seasonally for breeding. Te Awarua-o-Porirua Harbour (Porirua Harbour) is the largest, and the most significant estuary in the southern North Island of New Zealand. It is a 807 hectare tidal lagoon estuary next to Porirua City and consists of two distinct estuary arms, Onepoto and Pauatahanui. Porirua Harbour once boasted a healthy and diverse ecosystem that supported fishes that are prized by the Ngati Toa as kaimoana. However, heavy metal contamination has become problematic following the introduction of intensive industry and development in the harbour catchment.  The aim of this research was to 1) quantify levels of four heavy metals (Cu, Zn, Pb, and Hg) in the tissue (muscle and liver) of yellow belly flounder (Pātiki, tōtara, Rhombosolea leporina), sand flounder (Pātiki, Rhombosolea plebeia), speckled sole (Peltorhamphus latus), rig shark (Pioke, Makō, Mangō, Mustelus lenticulatus), short-tailed stingray (Whai, Dasyatis brevicaudata), and eagle ray (Whai keo, Myliobatis tenuicaudatus) caught in Porirua Harbour, and look for differences between sexes, tissue types, as well as effects of size and age, 2) examine each fish sampled for general metrics of health (parasite load, skin lesions, etc.) as well as diet, and look for relationships with body burdens of metals, 3) examine maternal offloading of heavy metals from pregnant rig shark to near-term embryos, 4) examine the movement of benthic fishes between the two estuary arms using mark/recapture methods.  To assess heavy metal accumulation and movement in benthic fishes, fish were collected and/or tagged over a 4-month period in 2018 (March-August) across 8 sites in Porirua Harbour. Tagged fish were unable to be recovered so conclusions were left undetermined. Overall, liver tissue had the highest levels of heavy metal concentration, with the expectation of Hg being elevated in the muscle tissue of rig shark. There were significant differences observed for species, fish size, with smaller fishes having higher Cu concentration, and larger fish having higher Hg concentrations. There was little to no relationship observed between Zn and Pb concentrations in this study.  To investigate the role of maternal offloading of heavy metals from maternal rig shark to their near-term embryos, embryos were collected from the uterus of 13 pregnant females and assessed individually for heavy metal (Cu, Zn, Pb, Hg) concentrations in muscle tissue. Overall, there was no relationship for Cu between the amount in embryos and either the maternal concentration or size. However, Zn and Pb concentration in rig shark embryos were positively related with maternal size. Therefore, size explained embryo Zn and Pb concentration in rig shark embryos, and embryo Hg concentrations were explained by maternal concentrations and size, suggesting maternal offloading of Hg might be occurring in rig shark.  The results of this thesis support prior research findings of heavy metal accumulation depending primarily on the tissue type, fish size and is metal and species specific. This research adds to the currently lacking information on heavy metal accumulation in these study species, and will aid the ongoing monitoring of Porirua Harbour by Greater Wellington Regional Council and Porirua City Council.</p>


2020 ◽  
Vol 9 (1) ◽  
pp. 1-13
Author(s):  
Njukeng Jetro Nkengafac ◽  
Sylvia Kratz ◽  
Ewald Schnug

The potential accumulation of heavy metals in soils due to rapid urban and industrial development, and increasing reliance on agrochemicals in the last several decades has been of public concern. Excessive heavy metal accumulation in soils may not only result in environmental contamination, but excessive heavy metal uptake by crops may affect food quality and safety. The heavy metal concentrations of soils in banana, cocoa and oil palm farming systems in Fako Division of the South West Region of Cameroon were studied. For soil quality assessment, soil samples were collected at two depths: 0-15 cm and 15-30 cm and analyzed for seven heavy metals (Cd, Cu, Cr, Ni, Mn, Pb and Zn) using inductively coupled plasma optical emission spectrometer (ICP-OES). Cd levels in these soils were below the limits of detection (LOD) at both depths. Average contents of Cd, Cu, Cr, Mn, Ni, Pb and Zn in mg/kg ranged in the order: Cd (< LOD) < Pb (10.7 -17.1) < Cu (59.7-112.7) < Ni (100.2 -174.5) < Zn (129.7-180.4) < Cr (192.7-685.3) < Mn (2731.5-5053.5) for both depths. The soils were all acidic (pH; 4.2-5.5). There were significant variations (p≤0.05) in Cu, Cr, Mn and Zn concentrations within  different farming system(s). The soils of the studied farming systems had heavy metal levels within the allowable limits for agriculture. However, the levels of Cu, Cr and Ni were higher in some samples. Although these soils are considered to be unpolluted, care should be taken to avoid high concentrations of heavy metals.


Parasitology ◽  
2003 ◽  
Vol 126 (7) ◽  
pp. S61-S69 ◽  
Author(s):  
C. SCHLUDERMANN ◽  
R. KONECNY ◽  
S. LAIMGRUBER ◽  
J. W. LEWIS ◽  
F. SCHIEMER ◽  
...  

This paper describes two approaches to evaluate the use of fish macroparasites as bioindicators of heavy metal pollution at selected river stretches in Austria. Firstly changes in the diversity and richness of endoparasites of the cyprinid barbel, Barbus barbus (L.), were tested in relation to heavy metal contents in the aquatic system. Secondly, the bioaccumulation potential of cadmium, lead and zinc was assessed in the acanthocephalan, Pomphorhynchus laevis (Müller, 1776), and compared with that in the muscle, liver and intestine of its barbel host. The present results indicated that in order to validate the role of parasite community patterns related to heavy metal pollution, more investigations on food web dynamics, interelationships between parasites and the presence/absence of intermediate hosts will be essential. Heavy metal concentrations differed significantly between the organs of barbel and P. laevis (P=0·001) with levels up to 2860 fold in the parasite. The high level of heavy metal accumulation in P. laevis compared with that in its barbel host, suggests that despite variability in the parasite infrapopulation, host mobility and feeding behaviour, P. laevis is a most sensitive indicator of heavy metals in aquatic ecosystems.


2019 ◽  
Vol 29 (3SI) ◽  
pp. 411
Author(s):  
N. H. Quyet ◽  
Le Hong Khiem ◽  
V. D. Quan ◽  
T. T. T. My ◽  
M. V. Frontasieva ◽  
...  

The aim of this paper was the application of statistical analysis including principal component analysis to evaluate heavy metal pollution obtained by moss technique in the air of Ha Noi and its surrounding areas and to evaluate potential pollution sources. The concentrations of 33 heavy metal elements in 27 samples of Barbula Indica moss in the investigated region collected in December of 2016 in the investigated area have been examined using multivariate statistical analysis. Five factors explaining 80% of the total variance were identified and their potential sources have been discussed.


Sign in / Sign up

Export Citation Format

Share Document