scholarly journals Valorization of crude glycerol from biodiesel production

2016 ◽  
Vol 22 (4) ◽  
pp. 461-489 ◽  
Author(s):  
Sandra Konstantinovic ◽  
Bojana Danilovic ◽  
Jovan Ciric ◽  
Slavica Ilic ◽  
Dragisa Savic ◽  
...  

The increased production of biodiesel as an alternative fuel involves the simultaneous growth in production of crude glycerol as its main by-product. Therefore, the feasibility and sustainability of biodiesel production requires the effective utilization of crude glycerol. This review describes various uses of crude glycerol as a potential green solvent for chemical reactions, a starting raw material for chemical and biochemical conversions into value-added chemicals, a substrate or co-substrate in microbial fermentations for synthesis of valuable chemicals and production of biogas and biohydrogen as well as a feedstuff for animal feed. A special attention is paid to various uses of crude glycerol in biodiesel production.

Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 609 ◽  
Author(s):  
Niravkumar Mahendrasinh Kosamia ◽  
Mahdieh Samavi ◽  
Bijaya Kumar Uprety ◽  
Sudip Kumar Rakshit

The rapid growth of global biodiesel production requires simultaneous effective utilization of glycerol obtained as a by-product of the transesterification process. Accumulation of the byproduct glycerol from biodiesel industries can lead to considerable environment issues. Hence, there is extensive research focus on the transformation of crude glycerol into value-added products. This paper makes an overview of the nature of crude glycerol and ongoing research on its conversion to value-added products. Both chemical and biological routes of glycerol valorization will be presented. Details of crude glycerol conversion into microbial lipid and subsequent products will also be highlighted.


Biomolecules ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 991
Author(s):  
D. Shanthana Lakshmi ◽  
Sivashunmugam Sankaranarayanan ◽  
Tejal K Gajaria ◽  
Guoqiang Li ◽  
Wojciech Kujawski ◽  
...  

This short review analyzed the recent trend towards, progresses towards the preparation of chemicals of, and value-added biomaterials from marine macroalgae resources, especially green seaweeds and their derived ulvan polysaccharides for various applications. In recent years, ulvan both in pristine and modified forms has gained a large amount of attention for its effective utilization in various areas due to its unique physiochemical properties, lack of exploration, and higher green seaweed production. The pristine form of ulvan (sulfated polysaccharides) is used as a bio-component; food ingredient; or a raw material for the production of numerous chemicals such as fuels, cosmetics, and pharmaceuticals, whereas its modified form is used in the sector of composites, membranes, and scaffolds, among others, because of its physicochemical properties. This review highlights the utilization of green seaweed and its derived ulvan polysaccharides for the preparation of numerous chemicals (e.g., solvents, fuel, and gas) and also value-added biomaterials with various morphologies (e.g., gels, fibers, films, scaffolds, nanomaterials, and composites).


2020 ◽  
Vol 7 (3) ◽  
pp. 259-266
Author(s):  
Xue-Lian Li ◽  
Quan Zhou ◽  
Shen-Xi Pan ◽  
Yu He ◽  
Fei Chang

: Glycerol is an organic polyol compound, and is an important raw material with extensive applications in daily/petrochemical and pharmaceutical industry. Glycerol is typically obtained by propylene chlorination, while the method used is complicated process and requires high energy consumption. Interestingly, glycerol is recognized as a major by-product of biodiesel production. Approximately 100 kg of glycerol is yielded for 1 tonne of biodiesel production. With the rapid development of the biodiesel industry, glycerol production capacity has been a serious surplus. This review introduces the selective conversion of glycerol into a variety of value-added chemicals such as propylene glycol, propanol, glyceraldehyde, and dihydroxyacetone via selective hydrogenation and oxidation, as well as hydrocarbons and ethers via pyrolysis, gasification and etherification, respectively. The efficiency of different types of catalysts and the influence of reaction parameters on the valorisation of glycerol have been elucidated. Emphasis is also laid on the study of catalytic mechanisms and pathways for some specific reactions.


Author(s):  
Duangduen Atong ◽  
Viboon Sricharoenchaikul

Thermochemical conversion process has become a viable technology for managing excess waste from various industries while producing value added fuel products. In the work reported here, distribution of products (solid, liquid, and gas) by thermal conversion of wastes from biodiesel production process which are extracted physic nut and palm shell mixed with glycerol waste was carried out using a medium scale tubular reactor with feeding rate of 5 g/min. Several important operating parameters were studied including the proportion of each waste (100:0 – 70:30), reaction temperature (700 – 900°C) and air to fuel ratio (AF) 0.0 – 0.6. It was found that when the temperature increased, the quantity of solid and liquid product decreased while gas product increased. For conversion to CO2, CO, CxHy and H2, when the temperature increased, CO2 decreased while yields of CO, CH4 and H2 increased. Greater conversion to CO2, CO, H2 with AF increased from 0.0 to 0.3. Higher AF from 0.3 to 0.6 resulted in lesser CO and H2 while conversion to CO2 increased. On the other hand, CxHy decreased when AF changed from 0.0 to 0.6. The maximum heating values of gas product in this study are 3.48 MJ/m3 and 2.27 MJ/m3 for glycerol waste mixed with physic nut waste and palm shell waste, respectively (both at 30% glycerol wastes and reaction temperature of 900°C). The maximum of mole ratio of H2 to CO obtained is 0.59 for physic nut and 0.37 for palm shell mixed wastes. Relatively high CxHy, low product gas heating value and H2 to CO ratio indicated the need for further product upgrading before using as raw material for other advanced fuel production processes such as Fisher-Tropsch, DME, or methanol syntheses beside direct heat and power utilization.


Reactions ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 499-513
Author(s):  
Eleni-Stavroula Vastaroucha ◽  
Sofia Maina ◽  
Savvoula Michou ◽  
Ourania Kalantzi ◽  
Chrysanthi Pateraki ◽  
...  

The utilization of crude glycerol, generated as a by-product from the biodiesel production process, for the production of high value-added products represents an opportunity to overcome the negative impact of low glycerol prices in the biodiesel industry. In this study, the biochemical behavior of Yarrowia lipolytica strains FMCC Y-74 and FMCC Y-75 was investigated using glycerol as a carbon source. Initially, the effect of pH value (3.0–7.0) was examined to produce polyols, intracellular lipids, and polysaccharides. At low pH values (initial pH 3.0–5.0), significant mannitol production was recorded. The highest mannitol production (19.64 g L−1) was obtained by Y. lipolytica FMCC Y-74 at pH = 3.0. At pH values ranging between 5.0 and 6.0, intracellular polysaccharides synthesis was favored, while polyols production was suppressed. Subsequently, the effect of crude glycerol and its concentration on polyols production was studied. Y. lipolytica FMCC Y-74 showed high tolerance to impurities of crude glycerol. Initial substrate concentrations influence polyols production and distribution with a metabolic shift toward erythritol production being observed when the initial glycerol concentration (Gly0) increased. The highest total polyols production (=56.64 g L−1) was obtained at Gly0 adjusted to ≈120 g L−1. The highest polyols conversion yield (0.59 g g−1) and productivity (4.36 g L−1 d−1) were reached at Gly0 = 80 g L−1. In fed-batch intermittent fermentation with glycerol concentration remaining ≤60 g L−1, the metabolism was shifted toward mannitol biosynthesis, which was the main polyol produced in significant quantities (=36.84 g L−1) with a corresponding conversion yield of 0.51 g g−1.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1537
Author(s):  
Gayathri Arun ◽  
Muhammad Ayoub ◽  
Zulqarnain Zulqarnain ◽  
Umesh Deshannavar ◽  
Mohd Hizami Mohd Mohd Yusoff ◽  
...  

Biodiesel production has gained considerable importance over the last few decades due to the increase in fossil fuel prices as well as toxic emissions of oxygen and nitrogen. The production of biodiesel via catalytic transesterification produces crude glycerol as a co-product along with biodiesel, amounting to 10% of the total biodiesel produced. Glycerol has a low value in its impure form, and the purification of glycerol requires sophisticated technologies and is an expensive process. The conversion of crude glycerol into value-added chemicals such as solketal is the best way to improve the sustainability of biodiesel synthesis using the transesterification reaction. Therefore, the conversion of crude glycerol into the solketal was investigated in a batch reactor simulation model developed by the Aspen Plus V11.0. The non-random two liquid theory (NRTL) method was used as a thermodynamic property package to study the effect of four input ketalization parameters. The model was validated with the findings of previous experimental studies of solketal synthesis using sulfuric acid as a catalyst. The influence of the following operating parameters was investigated: reaction time of 10,000 to 60,000 s, reaction temperature of 303 to 323 K, acetone to glycerol molar ratio of 2:1 to 10:1, and catalyst concentration of 0.005 to 0.03 wt %. The optimum solketal yield of 81.36% was obtained at the optimized conditions of 313 K, 9:1, 0.03 wt %, and 40,000 s. The effect of each input parameter on the ketalization process and interaction between input and output parameters was investigated by using the response surface methodology (RSM) optimizer. The relationship between independent and response variables developed by RSM fit most of the simulation data, which showed the accuracy of the model. A second-order differential equation fit the simulation data well and showed an R2 value of 0.99. According to the findings of RSM, the influence of catalyst amount, acetone to glycerol molar ratio, and reaction time were more significant on solketal yield. The effect of temperature on the performance of the reaction was not found to be significant because of the exothermic nature of the process. The findings of this study showed that biodiesel-derived glycerol can be effectively utilized to produce solketal, which can be used for a wider range of applications such as a fuel additive. However, further work is required to enhance the solketal yield by developing new heterogeneous catalysts so that the industrial implementation of its production can be made possible.


Author(s):  
M Shafiqur Rahman ◽  
Chunbao (Charles) Xu ◽  
Zi-Hua Jiang ◽  
Wensheng Qin

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Magdalena Rakicka-Pustułka ◽  
Joanna Miedzianka ◽  
Dominika Jama ◽  
Sylwia Kawalec ◽  
Kamila Liman ◽  
...  

Abstract Background Contemporary biotechnology focuses on many problems related to the functioning of developed societies. Many of these problems are related to health, especially with the rapidly rising numbers of people suffering from civilization diseases, such as obesity or diabetes. One factor contributing to the development of these diseases is the high consumption of sucrose. A very promising substitute for this sugar has emerged: the polyhydroxy alcohols, characterized by low caloric value and sufficient sweetness to replace table sugar in food production. Results In the current study, yeast belonging to the Yarrowia clade were tested for erythritol, mannitol and arabitol production using crude glycerol from the biodiesel and soap industries as carbon sources. Out of the 13 tested species, Yarrowia divulgata and Candida oslonensis turned out to be particularly efficient polyol producers. Both species produced large amounts of these compounds from both soap-derived glycerol (59.8–62.7 g dm−3) and biodiesel-derived glycerol (76.8–79.5 g dm−3). However, it is equally important that the protein and lipid content of the biomass (around 30% protein and 12% lipid) obtained after the processes is high enough to use this yeast in the production of animal feed. Conclusions The use of waste glycerol for the production of polyols as well as utilization of the biomass obtained after the process for the production of feed are part of the development of modern waste-free technologies.


2012 ◽  
Vol 5 (1) ◽  
pp. 13 ◽  
Author(s):  
Fangxia Yang ◽  
Milford A Hanna ◽  
Runcang Sun

2020 ◽  
Vol 24 (2) ◽  
pp. 62-66
Author(s):  
Zorana Rončević ◽  
Ida Zahović ◽  
Nikolina Danilović ◽  
Siniša Dodić ◽  
Jovana Grahovac ◽  
...  

A rapid expansion of the biodiesel industry has created various ecological issues relative to crude glycerol disposal. Xanthan biosynthesis is considered one of the sustainable solutions for minimizing the adverse effects of waste crude glycerol on the environment. The initial phase of xanthan production on crude glycerol entails the screening of producing microorganism. Therefore, the purpose of this study is to examine the possibility of xanthan production on a crude glycerol-based medium using different Xanthomonas campestris strains. The bioprocesses performed were assessed according to the rheology of the media considered, amounts of xanthan produced and conversion degrees of the most important nutrients present. The pseudoplastic behavior of all the media considered, the amounts of xanthan produced (5.22-7.67 g/L) and the degrees of crude glycerol, total nitrogen and phosphorus conversion (34.44-57.61 %, 23.04-30.35 % and 18.20-22.28 %, respectively) suggest that crude glycerol, after additional bioprocess optimization, can be a suitable raw material for the industrial production of xanthan.


Sign in / Sign up

Export Citation Format

Share Document