scholarly journals Modeling of milk lactose removal by column adsorption using artificial neural networks: MLP and RBF

2019 ◽  
Vol 25 (4) ◽  
pp. 369-382
Author(s):  
Manuela Leite ◽  
Matheus Santos ◽  
Eulina Costa ◽  
Acenini Balieiro ◽  
Álvaro Lima ◽  
...  

Artificial neural network (ANN) techniques are effective in modeling nonlinear processes, are simple to implement and require low computational time. In this work, the lactose adsorption process for continuous flow in a fixed-bed column with a molecularly imprinted polymer (MIP) adsorbent was modeled using an ANN technique. The neural models allowed predicting the relative lactose concentration (C/C0) from the interactions between the variables of contact time (min), temperature (?C), granulometry (mesh), bed height (cm) and flow rate (mL min-1). The ANN models were developed in MATLAB using multilayer perceptrons (MLP) and a radial basis function network (RBF). The MLP model was developed using a three-layer feed forward backpropagation network with 5, 8 and 4 neurons in the first, second and third layer, respectively. The function (RBF) network is also proposed and its performance is compared to a traditional network type. The best architecture configuration RBF model was developed using 5, 14 and 1 neurons in the first, second and third layer, respectively. The proposal of development of mathematical models applied to multi-component adsorption system for milk using these approaches is innovative. The resulting breakthrough curve models for lactose adsorption were in good agreement with the experimental results. Performance indices, such as R?, MSE, RMSE, SSE, MAE and RME were used to evaluate the reliabilities and accuracies of the models. A comparison between the ANN models shows the ability to predict the breakthrough curves of lactose removal in the milk adsorption process. Though, the MLP network model shows more accurately a higher correlation coefficient (R2 = 0.9751) and lower values for the obtained error indices. The accuracy of the model is confirmed by the comparison between the predicted and experimental data. The results showed that both neural models efficiently described the non-linear process of lactose adsorption in a fixed-bed column.

2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Nathalia Krummenauer Haro ◽  
Ivone Vanessa Jurado Dávila ◽  
Keila Guerra Pacheco Nunes ◽  
Marcela Andrea Espina de Franco ◽  
Nilson Romeu Marcilio ◽  
...  

AbstractThis work studied the removal of paracetamol through the adsorption process using the granular activated carbon. The results indicated that it was possible to obtain 95% of removal under the experimental conditions of pH 6, 120 min of process and 5 g L−1 of solid adsorbent. The kinetic model that best fit the experimental data was the pseudo-first order. The isotherm model that best fit the experimental data was the Sips. The thermodynamic tests indicated that the adsorption process was favorable and spontaneous and confirmed the endothermic nature of the process. In fixed bed column adsorption, the best operating condition found was obtained using the flow rate of 3 mL min−1 and bed mass equal to 0.5 g. In this case, the system presented the highest volume of treated PAR effluent, of 810 mL per gram of carbon in the bed, besides a longer rupture time and bed saturation.


2008 ◽  
Vol 47 (18) ◽  
pp. 6999-7004 ◽  
Author(s):  
Ayşegul Faki ◽  
Mustafa Turan ◽  
Ozgur Ozdemir ◽  
Abdullah Zahid Turan

2021 ◽  
Vol 209 ◽  
pp. 280-288
Author(s):  
Serdar Aydın ◽  
Hamda Mowlid Nur ◽  
Abdoulaye Mamadou Traore ◽  
Eren Yıldırım ◽  
Serkan Emik

Author(s):  
Kouassi Kouadio Dobi-Brice ◽  
Yacouba Zoungranan ◽  
Dje Daniel Yannick ◽  
Ekou Lynda ◽  
Ekou Tchirioua

Aims: Pollution by wastewaters from various urban activities such as artisanal dyeing plants is a real problem for developing countries. The treatment of wastewater by the adsorption method is carried out by means of less expensive and available adsorbent media. Two techniques of the adsorption method are possible: adsorption in continuous mode (column adsorption) and adsorption in discontinuous mode (batch adsorption). The choice of the continuous adsorption technique is justified by its ability to process large volumes of solutions. In this study, dyes contained in wastewater from artisanal dyeing plants were removed by continuous adsorption in a fixed-bed column of deactivated lichen biomass (Parmotrema dilatatum). Study Design: Random design Place and Duration of Study: Laboratory of Thermodynamics and Environmental Physico-Chemistry (University Nangui Abrogoua, Ivory Coast) between May 2020 and October 2020. Methodology: Four (4) categories of wastewater were collected in artisanal cotton and leather dyeing plants through two municipalities of the city of Abidjan, economic capital of Ivory Coast. Two (2) wastewaters colored in blue from dyeing of cotton boubous and jeans and two (2) wastewaters colored in red from dyeing of leather jackets and bags. These wastewaters were treated through the fixed bed column of deactivated lichens. The column feed rate was set at 0, 07 L.min-1 and the adsorbent bed mass at 100 g. Results: The study showed that, regardless of the nature of the dyed object and regardless of the target dye, the amount of dye adsorbed was better with waters of higher initial concentration. Thus the best amount of adsorbed dye is 44.444 mg.g-1 and the best removal rate is 97.9%. These values are obtained with the red wastewater of bags (RWB) treatment which was the most concentrated wastewater. Conclusion: Good efficiency of deactivated lichen bed as adsorbent for the in situ removal of dyes from wastewater by continuous adsorption.


2011 ◽  
Vol 64 (3) ◽  
pp. 654-660 ◽  
Author(s):  
Xiuli Han ◽  
Wei Wang ◽  
Xiaojian Ma

The adsorption potential of lotus leaf to remove methylene blue (MB) from aqueous solution was investigated in batch and fixed-bed column experiments. Langmuir, Freundlich, Temkin and Koble–Corrigan isotherm models were employed to discuss the adsorption behavior. The results of analysis indicated that the equilibrium data were perfectly represented by Temkin isotherm and the Langmuir saturation adsorption capacity of lotus leaf was found to be 239.6 mg g−1 at 303 K. In fixed-bed column experiments, the effects of flow rate, influent concentration and bed height on the breakthrough characteristics of adsorption were discussed. The Thomas and the bed-depth/service time (BDST) models were applied to the column experimental data to determine the characteristic parameters of the column adsorption. The two models were found to be suitable to describe the dynamic behavior of MB adsorbed onto the lotus leaf powder column.


Sign in / Sign up

Export Citation Format

Share Document