scholarly journals Removal of Dyes from Wastewater of Artisanal Dyeing Plants by Adsorption in a Fixed Bed Column of Deactivated Lichens

Author(s):  
Kouassi Kouadio Dobi-Brice ◽  
Yacouba Zoungranan ◽  
Dje Daniel Yannick ◽  
Ekou Lynda ◽  
Ekou Tchirioua

Aims: Pollution by wastewaters from various urban activities such as artisanal dyeing plants is a real problem for developing countries. The treatment of wastewater by the adsorption method is carried out by means of less expensive and available adsorbent media. Two techniques of the adsorption method are possible: adsorption in continuous mode (column adsorption) and adsorption in discontinuous mode (batch adsorption). The choice of the continuous adsorption technique is justified by its ability to process large volumes of solutions. In this study, dyes contained in wastewater from artisanal dyeing plants were removed by continuous adsorption in a fixed-bed column of deactivated lichen biomass (Parmotrema dilatatum). Study Design: Random design Place and Duration of Study: Laboratory of Thermodynamics and Environmental Physico-Chemistry (University Nangui Abrogoua, Ivory Coast) between May 2020 and October 2020. Methodology: Four (4) categories of wastewater were collected in artisanal cotton and leather dyeing plants through two municipalities of the city of Abidjan, economic capital of Ivory Coast. Two (2) wastewaters colored in blue from dyeing of cotton boubous and jeans and two (2) wastewaters colored in red from dyeing of leather jackets and bags. These wastewaters were treated through the fixed bed column of deactivated lichens. The column feed rate was set at 0, 07 L.min-1 and the adsorbent bed mass at 100 g. Results: The study showed that, regardless of the nature of the dyed object and regardless of the target dye, the amount of dye adsorbed was better with waters of higher initial concentration. Thus the best amount of adsorbed dye is 44.444 mg.g-1 and the best removal rate is 97.9%. These values are obtained with the red wastewater of bags (RWB) treatment which was the most concentrated wastewater. Conclusion: Good efficiency of deactivated lichen bed as adsorbent for the in situ removal of dyes from wastewater by continuous adsorption.

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3162
Author(s):  
Huijie Zhu ◽  
Qiang Huang ◽  
Shuai Fu ◽  
Xiuji Zhang ◽  
Mingyan Shi ◽  
...  

Traces of Molybdenum (Mo) in drinking water pose potent dangers owing to its harmful effects on the health of humans. This study used nanoscale zero-valent iron (Fe0) supported by activated carbon (NZVI/AC) for removing Mo(VI) from raw water. In an attempt to gain an understanding of the various factors that affect the process, we designed the study to look into the impact of various experimental parameters including pH, adsorption kinetics, and coexisting ions on the Mo(VI) removal using fixed-bed column runs and a batch-adsorption method and for Mo(VI) removal using NZVI/AC. The optimum conditions were found to be pH 4.5 and an equilibrium time of 9 h and 72 h for simulation water (SW) and raw water (RW), respectively. The removal of Mo(VI) was remarkably inhibited by the presence of silicate (SiO42−) and phosphate (PO43−), while the impact of humic acid and some other anions was insignificant. Metal cations such as Fe3+, Al3+, Zn2+, and Ni2+ enhanced the adsorption of Mo(VI). The influent contaminant concentration Mo(VI) in raw water was found to be 0.1603 mg/L, the empty-bed contact time (EBCT) was 3 and 6 min, whereas the breakthrough empty-bed volumes were 800 and 1100 and at the value of 70 μg/L provided by WHO provisional guidelines, respectively.


2018 ◽  
Vol 5 (1) ◽  
pp. 21-34
Author(s):  
Habib Koolivand ◽  
Afsaneh Shahbazi

The batch and fixed-bed column adsorption of methylene blue (MB), a widely used toxic dye, onto graphene oxide (GO) was investigated in this study. GO was synthesized using modified Hummers method and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Response surface methodology (RSM) was employed to optimize batch and fixed-bed column adsorption of MB. Batch adsorption experiments were carried out by central composite design (CCD) with three input parameters including initial MB concentration (C0: 50-350 mg/L), GO dosage (D: 0.05-0.7 g/L), and pH (pH: 3-9). The adsorption capacity of GO for MB removal in the optimum level of factors (C0: 50 mg/L, D: 0.05 g/L, and pH: 8.5) was predicted by the model to be 700 mg/g. Adsorption kinetic data were tested using pseudo-first order, pseudo-second order, and intraparticle diffusion models. The kinetic experimental data was well fitted with pseudo-second order kinetic model (R2=1). The adsorption of MB onto GO demonstrated that Langmuir model (R2=0.999) could better fit the adsorption data than the Freundlich model (R2=0.914). Thermodynamic parameters including enthalpy (ΔH), Gibbs free energy (ΔG), and entropy (ΔS) were also investigated. Positive value of ΔH and negative value of ΔG indicated the endothermic and spontaneous nature of the adsorption. The positive value of ΔS also showed increased randomness at the solid/liquid interface during the adsorption of MB onto GO. The real wastewater experiment at optimum conditions showed high performance of adsorbent in the presence of other ions. Fixed-bed column experiments were designed using a three-factor, three-level Box-Behnken design (BBD) to investigate the single and combined effects of influent concentration (Cinf: 50-200 mg/L), flow rate (Q: 0.25-0.8 mL/min), and bed height (BH: 3-7 cm). MB removal from GO in the optimum levels of factors (Cinf: 51 mg/L, BH: 5.7 cm, and Q: 0.25 mL/min) was predicted by the model to be 86% (qe=459.3 mg/g). Fixed-bed experimental data were also fitted well to the Thomas and BDST models. The results showed that GO can be used as an efficient adsorbent for batch and fixed-bed adsorption of cationic dyes from synthetic and real wastewater.


2021 ◽  
Vol 12 (1) ◽  
pp. 19-26
Author(s):  
Shinta Indah ◽  
Denny Helard ◽  
Dian Ramadhan

To increase the performance of continuous adsorption with rice husks as adsorbent in Zn removal from groundwater, a series of fixed bed column was applied. The experiments were carried out at the acrylic columns having diameter of 7 cm, column height of 19.5 cm, bed height of 13.5 cm and flow rate of 2 gpm/ft2 (310 mL/minute) for 540 minutes. The number of columns used were 3 columns arranged in series and the rice husk used were in their original size (1-2 mm). The influent concentration of Zn metal was 7.62 mg/L. The results showed that the use of column adsorption in series increased the removal efficiency of Zn by rice husks, from 33.21% using 1 column to 51.70% with 3 columns. The adsorption capacity of Zn obtained when using 3 columns in series was 3.542 mg/g. In addition, the use of adsorption columns in series can also prolong the saturation of the adsorbent, thereby extending its service life. The overall research results demonstrated that column the adsorption in series with rice husk as an adsorbent has the potential to be applied to remove heavy metals from groundwater.


2020 ◽  
Vol 81 (10) ◽  
pp. 2109-2126 ◽  
Author(s):  
Seyed Omid Ahmadinejad ◽  
Seyed Taghi Omid Naeeni ◽  
Zahra Akbari ◽  
Sara Nazif

Abstract One of the major pollutants in leachate is phenol. Due to safety and environmental problems, removal of phenol from leachate is essential. Most of the adsorption studies have been conducted in batch systems. Practically, large-scale adsorption is carried out in continuous systems. In this research, the adsorption method has been used for phenol removal from leachate by using walnut shell activated carbon (WSA) and coconut shell activated carbon (CSA) as adsorbents in a fixed-bed column. The effect of adsorbent bed depth, influent phenol concentration and type of adsorbent on adsorption was explored. By increasing the depth of the adsorbent bed in the column, phenol removal efficiency and saturation time increase significantly. Also, by increasing the influent concentration, saturation time of the column decreases. To predict the column performance and describe the breakthrough curve, three kinetic models of Yon-Nelson, Adams-Bohart and Thomas were applied. The results of the experiments indicate that there is a good match between the results of the experiment and the predicted results of the models.


2008 ◽  
Vol 47 (18) ◽  
pp. 6999-7004 ◽  
Author(s):  
Ayşegul Faki ◽  
Mustafa Turan ◽  
Ozgur Ozdemir ◽  
Abdullah Zahid Turan

2021 ◽  
Vol 209 ◽  
pp. 280-288
Author(s):  
Serdar Aydın ◽  
Hamda Mowlid Nur ◽  
Abdoulaye Mamadou Traore ◽  
Eren Yıldırım ◽  
Serkan Emik

Sign in / Sign up

Export Citation Format

Share Document