scholarly journals Analytical solitons for the space-time conformable differential equations using two efficient techniques

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ahmad Neirameh ◽  
Foroud Parvaneh

AbstractExact solutions to nonlinear differential equations play an undeniable role in various branches of science. These solutions are often used as reliable tools in describing the various quantitative and qualitative features of nonlinear phenomena observed in many fields of mathematical physics and nonlinear sciences. In this paper, the generalized exponential rational function method and the extended sinh-Gordon equation expansion method are applied to obtain approximate analytical solutions to the space-time conformable coupled Cahn–Allen equation, the space-time conformable coupled Burgers equation, and the space-time conformable Fokas equation. Novel approximate exact solutions are obtained. The conformable derivative is considered to obtain the approximate analytical solutions under constraint conditions. Numerical simulations obtained by the proposed methods indicate that the approaches are very effective. Both techniques employed in this paper have the potential to be used in solving other models in mathematics and physics.

Filomat ◽  
2018 ◽  
Vol 32 (9) ◽  
pp. 3347-3354 ◽  
Author(s):  
Nematollah Kadkhoda ◽  
Michal Feckan ◽  
Yasser Khalili

In the present article, a direct approach, namely exp(-?)-expansion method, is used for obtaining analytical solutions of the Pochhammer-Chree equations which have a many of models. These solutions are expressed in exponential functions expressed by hyperbolic, trigonometric and rational functions with some parameters. Recently, many methods were attempted to find exact solutions of nonlinear partial differential equations, but it seems that the exp(-?)-expansion method appears to be efficient for finding exact solutions of many nonlinear differential equations.


2019 ◽  
Vol 8 (1) ◽  
pp. 157-163 ◽  
Author(s):  
K. Hosseini ◽  
A. Bekir ◽  
F. Rabiei

AbstractThe current work deals with the fractional forms of EW and modified EW equations in the conformable sense and their exact solutions. In this respect, by utilizing a traveling wave transformation, the governing space-time fractional models are converted to the nonlinear ordinary differential equations (NLODEs); and then, the resulting NLODEs are solved through an effective method called the exp(−ϕ(ϵ))-expansion method. As a consequence, a number of exact solutions to the fractional forms of EW and modified EW equations are generated.


2017 ◽  
Vol 2 (2) ◽  
pp. 341-350 ◽  
Author(s):  
Vishwanath B. Awati

AbstractThis paper presents Dirichlet series and approximate analytical solutions of magnetohydrodynamic (MHD) flow due to a suction / blowing caused by boundary layer of an incompressible viscous flow. The governing nonlinear partial differential equations of momentum equations are reduced into a set of nonlinear ordinary differential equations (ODE) by using a classical similarity transformation along with appropriate boundary conditions. Both nonlinearity and infinite interval demand novel mathematical tools for their analysis. We use elegant fast converging Dirichlet series and approximate analytical solutions (method of stretching of variables) of these nonlinear differential equations. These methods have advantages over pure numerical methods for obtaining derived quantities accurately for various values of the parameters involved at a stretch and also they are valid in much larger parameter domains as compared with DTM-Padé and classical numerical schemes.


2009 ◽  
Vol 2009 ◽  
pp. 1-34 ◽  
Author(s):  
Serdal Pamuk

This paper features a survey of some recent developments in techniques for obtaining approximate analytical solutions of some nonlinear differential equations arising in various fields of science and engineering. Adomian's decomposition method is applied to some nonlinear problems, and some mathematical tools such as He's homotopy perturbation method and variational iteration method are introduced to overcome the shortcomings of Adomian's method. The results of some comparisons of these three methods appearing in the research literature are given.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Li ◽  
Huizhang Yang ◽  
Bin He

Based on Jumarie’s modified Riemann-Liouville derivative, the fractional complex transformation is used to transform fractional differential equations to ordinary differential equations. Exact solutions including the hyperbolic functions, the trigonometric functions, and the rational functions for the space-time fractional bidirectional wave equations are obtained using the(G′/G)-expansion method. The method provides a promising tool for solving nonlinear fractional differential equations.


2013 ◽  
Vol 274 ◽  
pp. 324-327
Author(s):  
J.F. Nie ◽  
M.L. Zheng ◽  
G.B. Yu ◽  
J.M. Wen ◽  
B. Dai

To obtain exact analytical solutions of differential equations of gear system dynamics due to the difficulty of solving complicated differential equations. Only the approximate analytical solutions can be determined. The method of multiple scales is one of the most powerful, popular perturbation methods. The dynamic model which describes the torsional vibration behaviors of gear system has been introduced accurately in this paper. The differential equation of gear system nonlinear dynamics exhibiting combined nonlinearity influence such as time-varying stiffness, tooth backlash and dynamic transmission error (DTE) has been proposed. The theory of multiple scales method has been presented in solving nonlinear differential equations of gear systems and the frequency response equation has been obtained. The fact that the approximate analytical solution by using the method of multiple scales is in good agreement with the exact solutions by numerically integrating differential equations has proved that the method of multiple scales is one of the most frequently used methods in solving differential equations, especially for large and complicated differential equations.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Constantin Bota ◽  
Bogdan Căruntu

The paper presents a new method, called the Polynomial Least Squares Method (PLSM). PLSM allows us to compute approximate analytical solutions for the Brusselator system, which is a fractional-order system of nonlinear differential equations.


2015 ◽  
Vol 2 (7) ◽  
pp. 140406 ◽  
Author(s):  
Kamruzzaman Khan ◽  
M. Ali Akbar ◽  
H. Koppelaar

Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced ( G ′/ G )-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd–Sokolov–Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics.


Sign in / Sign up

Export Citation Format

Share Document