scholarly journals AB-wavelet frames in L2(Rn)

Filomat ◽  
2019 ◽  
Vol 33 (11) ◽  
pp. 3587-3597 ◽  
Author(s):  
Hari Srivastava ◽  
Firdous Shah

In order to provide a unified treatment for the continuum and digital realm of multivariate data, Guo, Labate, Weiss and Wilson [Electron. Res. Announc. Amer. Math. Soc. 10 (2004), 78-87] introduced the notion of AB-wavelets in the context of multiscale analysis. We continue and extend their work by studying the frame properties of AB-wavelet systems {DADBTk??(k ? Zn; 1 <? ? <? L)}in L2(Rn). More precisely, we establish four theorems giving su_cient conditions under which the AB-wavelet system constitutes a frame for L2(Rn). The proposed conditions are stated in terms of the Fourier transforms of the generating functions.

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Firdous A. Shah

Abstract Gabardo and Nashed studied nonuniform wavelets by using the theory of spectral pairs for which the translation set {\Lambda=\{0,r/N\}+2\mathbb{Z}} is no longer a discrete subgroup of {\mathbb{R}} but a spectrum associated with a certain one-dimensional spectral pair. In this paper, we establish three sufficient conditions for the nonuniform wavelet system {\{\psi_{j,\lambda}(x)=(2N)^{j/2}\psi((2N)^{j}x-\lambda),\,j\in\mathbb{Z},\,% \lambda\in\Lambda\}} to be a frame for {L^{2}(\mathbb{R})} . The proposed inequalities are stated in terms of Fourier transforms and hold without any decay assumptions on the generator of such a system.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Thomas G. Mertens ◽  
Gustavo J. Turiaci

Abstract We study two-dimensional Liouville gravity and minimal string theory on spaces with fixed length boundaries. We find explicit formulas describing the gravitational dressing of bulk and boundary correlators in the disk. Their structure has a striking resemblance with observables in 2d BF (plus a boundary term), associated to a quantum deformation of SL(2, ℝ), a connection we develop in some detail. For the case of the (2, p) minimal string theory, we compare and match the results from the continuum approach with a matrix model calculation, and verify that in the large p limit the correlators match with Jackiw-Teitelboim gravity. We consider multi-boundary amplitudes that we write in terms of gluing bulk one-point functions using a quantum deformation of the Weil-Petersson volumes and gluing measures. Generating functions for genus zero Weil-Petersson volumes are derived, taking the large p limit. Finally, we present preliminary evidence that the bulk theory can be interpreted as a 2d dilaton gravity model with a sinh Φ dilaton potential.


2014 ◽  
Vol 57 (2) ◽  
pp. 254-263 ◽  
Author(s):  
Ole Christensen ◽  
Hong Oh Kim ◽  
Rae Young Kim

AbstractThe unitary extension principle (UEP) by A. Ron and Z. Shen yields a sufficient condition for the construction of Parseval wavelet frames with multiple generators. In this paper we characterize the UEP-type wavelet systems that can be extended to a Parseval wavelet frame by adding just one UEP-type wavelet system. We derive a condition that is necessary for the extension of a UEP-type wavelet system to any Parseval wavelet frame with any number of generators and prove that this condition is also sufficient to ensure that an extension with just two generators is possible.


2006 ◽  
Vol 58 (6) ◽  
pp. 1121-1143 ◽  
Author(s):  
Marcin Bownik ◽  
Darrin Speegle

AbstractThe Feichtinger conjecture is considered for three special families of frames. It is shown that if a wavelet frame satisfies a certain weak regularity condition, then it can be written as the finite union of Riesz basic sequences each of which is a wavelet system. Moreover, the above is not true for general wavelet frames. It is also shown that a sup-adjoint Gabor frame can be written as the finite union of Riesz basic sequences. Finally, we show how existing techniques can be applied to determine whether frames of translates can be written as the finite union of Riesz basic sequences. We end by giving an example of a frame of translates such that any Riesz basic subsequence must consist of highly irregular translates.


2015 ◽  
Vol 27 (04) ◽  
pp. 1550007 ◽  
Author(s):  
Karsten Leonhardt ◽  
Norbert Peyerimhoff ◽  
Martin Tautenhahn ◽  
Ivan Veselić

We study Schrödinger operators on L2(ℝd) and ℓ2(ℤd) with a random potential of alloy-type. The single-site potential is assumed to be exponentially decaying but not necessarily of fixed sign. In the continuum setting, we require a generalized step-function shape. Wegner estimates are bounds on the average number of eigenvalues in an energy interval of finite box restrictions of these types of operators. In the described situation, a Wegner estimate, which is polynomial in the volume of the box and linear in the size of the energy interval, holds. We apply the established Wegner estimate as an ingredient for a localization proof via multiscale analysis.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Trésor Ekanga

We study the multiparticle Anderson model in the continuum and show that under some mild assumptions on the random external potential and the inter-particle interaction, for any finite number of particles, the multiparticle lower spectral edges are almost surely constant in absence of ergodicity. We stress that this result is not quite obvious and has to be handled carefully. In addition, we prove the spectral exponential and the strong dynamical localization of the continuous multiparticle Anderson model at low energy. The proof based on the multiparticle multiscale analysis bounds needs the values of the external random potential to be independent and identically distributed, whose common probability distribution is at least Log-Hölder continuous.


Author(s):  
MARTIN EHLER

In this paper, we present a construction of compactly supported multivariate pairs of dual wavelet frames. The approach is based on the convolution of two refinable distributions. We obtain smooth wavelets with any preassigned number of vanishing moments. Their underlying refinable function is fundamental. In the examples, we obtain symmetric wavelets with small support from optimal refinable functions, i.e. the refinable function has minimal mask size with respect to smoothness and approximation order of its generated multiresolution analysis. The wavelet system has maximal approximation order with respect to the underlying refinable function.


2014 ◽  
Vol 1079-1080 ◽  
pp. 878-881
Author(s):  
Song Zhen Sun ◽  
Yi Guo

It is shown that there exists a frame wavelet with fast decay in the time domain and compact support in the frequency domain generating a wavelet system whose canonical dual frame cannot be generated by an arbitrary number of generators. We show that there exist wavelet frame generated by two functions which have good dual wavelet frames, but for which the canonical dual wavelet frame does not consist of wavelets, according to scaling functions.


2018 ◽  
Vol 175 ◽  
pp. 06032 ◽  
Author(s):  
Joseph Karpie ◽  
Kostas Orginos ◽  
Anatoly Radyushkin ◽  
Savvas Zafeiropoulos

Ioffe-time distributions, which are functions of the Ioffe-time ν, are the Fourier transforms of parton distribution functions with respect to the momentum fraction variable x. These distributions can be obtained from suitable equal time, quark bilinear hadronic matrix elements which can be calculated from first principles in lattice QCD, as it has been recently argued. In this talk I present the first numerical calculation of the Ioffe-time distributions of the nucleon in the quenched approximation.


Sign in / Sign up

Export Citation Format

Share Document