scholarly journals Beetle antennae search for neural network model with application to population prediction: An intelligent optimization algorithm

Filomat ◽  
2020 ◽  
Vol 34 (15) ◽  
pp. 4937-4952
Author(s):  
Qing Wu ◽  
Jie Wang ◽  
Gang Xu ◽  
Shuai Li ◽  
Dechao Chen

Traditional back-propagation (BP) neural networks can implement complex nonlinear mapping relationships, and solve internal mechanism problems. However, as number of samples increases, training BP neural networks may consume a lot of time. For this reason, to improve the efficiency as well as prediction accuracy of the neural network model, in this paper, we propose an intelligent optimization algorithm, by leveraging the beetle antennae search (BAS) strategy to optimize the weights of neural network model, and apply it to the population prediction. A series of experiments demonstrate the improved accuracy of the proposed algorithm over BP neural networks. In particular, the calculation time spent of neural network model via the proposed algorithm is only 20% of the one of BP neural network model. Finally, we present a reasonable trend of population growth in China, and analyze the causes of changes in population trends, which may provide an effective basis for the department to adjust population development strategies

2013 ◽  
Vol 726-731 ◽  
pp. 4303-4306 ◽  
Author(s):  
Yong Wang ◽  
Zhuang Xiong

This paper simple introduced back propagation (BP) neural networks, and constructed a dynamic predict model, based on it to predict forest disease and insect and rat pest. Then it analyzed and simulated with the BP neural network model with the data produced in the recent ten years. The result indicated that the BP neural network model is reliable for predicting the forest disease and insect and rat pest. The method provides scientific foundation for the forestry management of studied area.


2009 ◽  
Vol 19 (04) ◽  
pp. 285-294 ◽  
Author(s):  
ADNAN KHASHMAN

Credit scoring is one of the key analytical techniques in credit risk evaluation which has been an active research area in financial risk management. This paper presents a credit risk evaluation system that uses a neural network model based on the back propagation learning algorithm. We train and implement the neural network to decide whether to approve or reject a credit application, using seven learning schemes and real world credit applications from the Australian credit approval datasets. A comparison of the system performance under the different learning schemes is provided, furthermore, we compare the performance of two neural networks; with one and two hidden layers following the ideal learning scheme. Experimental results suggest that neural networks can be effectively used in automatic processing of credit applications.


2012 ◽  
Vol 16 (4) ◽  
pp. 1151-1169 ◽  
Author(s):  
A. El-Shafie ◽  
A. Noureldin ◽  
M. Taha ◽  
A. Hussain ◽  
M. Mukhlisin

Abstract. Rainfall is considered as one of the major components of the hydrological process; it takes significant part in evaluating drought and flooding events. Therefore, it is important to have an accurate model for rainfall forecasting. Recently, several data-driven modeling approaches have been investigated to perform such forecasting tasks as multi-layer perceptron neural networks (MLP-NN). In fact, the rainfall time series modeling involves an important temporal dimension. On the other hand, the classical MLP-NN is a static and has a memoryless network architecture that is effective for complex nonlinear static mapping. This research focuses on investigating the potential of introducing a neural network that could address the temporal relationships of the rainfall series. Two different static neural networks and one dynamic neural network, namely the multi-layer perceptron neural network (MLP-NN), radial basis function neural network (RBFNN) and input delay neural network (IDNN), respectively, have been examined in this study. Those models had been developed for the two time horizons for monthly and weekly rainfall forecasting at Klang River, Malaysia. Data collected over 12 yr (1997–2008) on a weekly basis and 22 yr (1987–2008) on a monthly basis were used to develop and examine the performance of the proposed models. Comprehensive comparison analyses were carried out to evaluate the performance of the proposed static and dynamic neural networks. Results showed that the MLP-NN neural network model is able to follow trends of the actual rainfall, however, not very accurately. RBFNN model achieved better accuracy than the MLP-NN model. Moreover, the forecasting accuracy of the IDNN model was better than that of static network during both training and testing stages, which proves a consistent level of accuracy with seen and unseen data.


Author(s):  
Venkata R. Duddu ◽  
Srinivas S. Pulugurtha ◽  
Ajinkya S. Mane ◽  
Christopher Godfrey

2002 ◽  
pp. 154-166 ◽  
Author(s):  
David West ◽  
Cornelius Muchineuta

Some of the concerns that plague developers of neural network decision support systems include: (a) How do I understand the underlying structure of the problem domain; (b) How can I discover unknown imperfections in the data which might detract from the generalization accuracy of the neural network model; and (c) What variables should I include to obtain the best generalization properties in the neural network model? In this paper we explore the combined use of unsupervised and supervised neural networks to address these concerns. We develop and test a credit-scoring application using a self-organizing map and a multilayered feedforward neural network. The final product is a neural network decision support system that facilitates subprime lending and is flexible and adaptive to the needs of e-commerce applications.


Sign in / Sign up

Export Citation Format

Share Document