scholarly journals Electrification of the vehicle propulsion system: An overview

2014 ◽  
Vol 27 (2) ◽  
pp. 299-316 ◽  
Author(s):  
Vladimir Katic ◽  
Boris Dumnic ◽  
Zoltan Corba ◽  
Dragan Milicevic

To achieve EU targets for 2020, internal combustion engine cars need to be gradually replaced with hybrid or electric ones, which have low or zero GHG emission. The paper presents a short overview of dynamic history of the electric vehicles, which led to nowadays modern solutions. Different possibilities for the electric power system realizations are described. Electric vehicle (EV) operation is analyzed in more details. Market future of EVs is discussed and plans for 2020, up to 2030 are presented. Other effects of electrification of the vehicles are also analyzed.

2011 ◽  
Vol 128-129 ◽  
pp. 846-849
Author(s):  
Shi Jun Fu ◽  
Yu Long Ren

With climate change being growing concerns, the development of EV (Electric Vehicles) has taken on an accelerated pace. This paper is to forecast China’s EV stock from 2011 to 2050 based on the double species growth model. We elaborate two orbits according to two scenarios: with vehicle stock being 200 and 300 per thousand people at 2050. These orbits reveals that, China’s EVs development has a golden stage which will last 10 to 11 years; And before this booming stage, there is a slowly growth period which will last 7 to 8 years. Furthermore, under each scenario, the difference between EVs and ICEVs (Internal Combustion Engine Vehicles) stock at 2030 is 4.69% to 6.77%, which confirms that China’s ambitious EVs program may be realized if government sets strong policy supports on this new industry persistently.


2020 ◽  
Vol 1 ◽  
pp. 1-23
Author(s):  
Dominik Bucher ◽  
Henry Martin ◽  
Jannik Hamper ◽  
Atefeh Jaleh ◽  
Henrik Becker ◽  
...  

Abstract. The adoption of electric vehicles has the potential to help decarbonizing the transport sector if they are powered by renewable energy sources. Limitations commonly associated with e-cars are their comparatively short ranges and long recharging cycles, leading to anxiety when having to travel long distances. Other factors such as temperature, destination or weekday may influence people in choosing an e-car for a certain trip. Using a unique dataset of 129 people who own both an electric vehicle (EV) as well as one powered by an internal combustion engine (ICE), we analyze tracking data over a year in order to have an empirically verified choice model. Based on a wide range of predictors, this model tells us for an individual journey if the person would rather choose the EV or the ICE car. Our findings show that there are only weak relations between the predictor and target variables, indicating that for many people the switch to an e-car would not affect their lifestyle and the related range anxiety diminishes when actually owning an electric vehicle. In addition, we find that choice behavior does not generalize well over different users.


2021 ◽  
Author(s):  
Leah Lazer ◽  
Sadanand Wachche ◽  
Ryan Sclar ◽  
Sarah Cassius

Efforts to reduce transportation emissions through electrification can accelerate their impact by focusing on intensively used vehicles. Vehicles driven on ride-hailing platforms such as Uber and Lyft are intensively used, and their distinct charging patterns can support the development of essential electric vehicle (EV) charging infrastructure. However, vehicles used for ride-hailing are often missed by actions to electrify other intensively used vehicles, and an array of disparately available financial incentives, EV models, and charging options produce a complicated landscape where it is often unclear whether an EV costs more or less than an internal combustion engine (ICE) vehicle or is suitable for ride-hailing. As a result, in U.S., European, and Canadian cities, the share of EVs among vehicles used for ride-hailing is often lower than or similar to the share of EVs in the overall vehicle stock. This paper identifies the largest barriers that prevent ride-hailing drivers from accessing EVs and analyzes ways that governments, industry and other stakeholders can tackle those barriers. It includes city scorecards that evaluate 10 U.S., European and Canadian cities on their progress towards dismantling these barriers, using an original methodology and data from Uber.


Author(s):  
S Geruk ◽  
О Sukmanyuk ◽  
O Kalnahus

The work is devoted to the urgent issue of the invention and development of foreign and domestic electric vehicles, which is one of the possible directions in solving the issue of environmental conservation. Almost 80% of the global automotive market is heading for a ban on gasoline and the switch to electric cars and hybrids. However, this movement was, until recently, leisurely, if not slow. The popularity of electric vehicles in the world is due to the fact that they have several advantages compared to cars with an internal combustion engine. The principle of operation of an electric vehicle is based on the fact that the movement is provided by the operation of an engine that uses electric energy for its work. The electric motor plays the same role as the internal combustion engine, in addition, in the electric car, it is possible to install several engines that are able to distribute energy more efficiently and more rationally. Batteries play the function of a fuel tank, which supplies the engine with the energy necessary to ensure the movement of the car. For Ukraine, innovation is very important for the development of our country. Constant demand makes it clear that the future of electric cars. Ukrainians are paying more and more attention to such passenger cars, or hybrid ones. Every year the number of registered electric vehicles becomes more and more. The article highlights the main stages of the development of electric vehicles and presents the main problems of these vehicles, which indicate that they tend to be constantly improved.


Author(s):  
Richik Ray

Abstract: In this paper, a MATLAB based Simulink model of a Series-Parallel Hybrid Electric Vehicle is presented. With the advent of Industry 4.0, the usage of Big Data, Machine Learning, Internet of Things, Artificial Intelligence, and similar groundbreaking domains of technology have usurped manual supervision in industrial as well as personal scenarios. This is aided by the drastic shift from orthodox and conventional Internal Combustion Engine based vehicles fuelled by fossil fuels in the order of petrol, diesel, etc., to fully functional electric vehicles developed by renowned companies, for example Tesla. Alongside 100% electric vehicles are hybrid vehicles that function on a system based on the integration of the conventional ICE and the modern Electric Propulsion System, which is referred to as the Hybrid Vehicle Drivetrain. Designs for modern HEVs and EVs are developed on computer software where simulations are run and all the essential parameters for the vehicle’s performance and sustainability are run and observed. This paper is articulated to discuss the parameters of a series-parallel HEV through an indepth MATLAB Simulink design, and further the observations are presented. Keywords: ICE (Internal Combustion Engine), HEV (Hybrid Electric Vehicle), Drivetrain, MATLAB, Simulink, PSD (Power Split Device), Vehicle Dynamics, SOC (State-of-Charge)


Sign in / Sign up

Export Citation Format

Share Document