Electrifying Ride-Hailing in the United States, Europe, and Canada: How to Enable Ride-Hailing Drivers to Switch to Electric Vehicles

2021 ◽  
Author(s):  
Leah Lazer ◽  
Sadanand Wachche ◽  
Ryan Sclar ◽  
Sarah Cassius

Efforts to reduce transportation emissions through electrification can accelerate their impact by focusing on intensively used vehicles. Vehicles driven on ride-hailing platforms such as Uber and Lyft are intensively used, and their distinct charging patterns can support the development of essential electric vehicle (EV) charging infrastructure. However, vehicles used for ride-hailing are often missed by actions to electrify other intensively used vehicles, and an array of disparately available financial incentives, EV models, and charging options produce a complicated landscape where it is often unclear whether an EV costs more or less than an internal combustion engine (ICE) vehicle or is suitable for ride-hailing. As a result, in U.S., European, and Canadian cities, the share of EVs among vehicles used for ride-hailing is often lower than or similar to the share of EVs in the overall vehicle stock. This paper identifies the largest barriers that prevent ride-hailing drivers from accessing EVs and analyzes ways that governments, industry and other stakeholders can tackle those barriers. It includes city scorecards that evaluate 10 U.S., European and Canadian cities on their progress towards dismantling these barriers, using an original methodology and data from Uber.

2011 ◽  
Vol 128-129 ◽  
pp. 846-849
Author(s):  
Shi Jun Fu ◽  
Yu Long Ren

With climate change being growing concerns, the development of EV (Electric Vehicles) has taken on an accelerated pace. This paper is to forecast China’s EV stock from 2011 to 2050 based on the double species growth model. We elaborate two orbits according to two scenarios: with vehicle stock being 200 and 300 per thousand people at 2050. These orbits reveals that, China’s EVs development has a golden stage which will last 10 to 11 years; And before this booming stage, there is a slowly growth period which will last 7 to 8 years. Furthermore, under each scenario, the difference between EVs and ICEVs (Internal Combustion Engine Vehicles) stock at 2030 is 4.69% to 6.77%, which confirms that China’s ambitious EVs program may be realized if government sets strong policy supports on this new industry persistently.


2021 ◽  
Vol 13 (22) ◽  
pp. 12535
Author(s):  
Mokhele Edmond Moeletsi

There are major concerns globally on the increasing population of internal combustion engine (ICE) vehicles and their environmental impact. The initiatives for the advancement of alternative propulsion systems, such as electric motors, have great opportunities, but are marked by a number of challenges that require major changes in policies and serious investment on the technologies in order to make them viable alternative mobility sources around the world. South Africa has struggled a lot in adopting electric vehicles among all the emerging countries. This is mostly attributed to a non-conducive environment for electric vehicle adoption. This study administered a survey consisting of Likert-scale questions in the Gauteng Province to gather information on people’s views on some of the major concerns around electric vehicle technology. The survey results demonstrated that Gauteng residents perceive electric vehicle price as the main constraint towards adoption of the technology and introduction of government policy towards addressing this challenge would be helpful. Some of the suggested interventions, such as the rollout of purchasing subsidies and tax rebates, received a high level of satisfaction among the respondents. Future initiatives that tackle issues of charging infrastructure network also received high satisfaction. Thus, there is a need for all stakeholders in the South African automotive industry to improve the enabling environment for the adoption of electric vehicles.


2020 ◽  
Vol 1 ◽  
pp. 1-23
Author(s):  
Dominik Bucher ◽  
Henry Martin ◽  
Jannik Hamper ◽  
Atefeh Jaleh ◽  
Henrik Becker ◽  
...  

Abstract. The adoption of electric vehicles has the potential to help decarbonizing the transport sector if they are powered by renewable energy sources. Limitations commonly associated with e-cars are their comparatively short ranges and long recharging cycles, leading to anxiety when having to travel long distances. Other factors such as temperature, destination or weekday may influence people in choosing an e-car for a certain trip. Using a unique dataset of 129 people who own both an electric vehicle (EV) as well as one powered by an internal combustion engine (ICE), we analyze tracking data over a year in order to have an empirically verified choice model. Based on a wide range of predictors, this model tells us for an individual journey if the person would rather choose the EV or the ICE car. Our findings show that there are only weak relations between the predictor and target variables, indicating that for many people the switch to an e-car would not affect their lifestyle and the related range anxiety diminishes when actually owning an electric vehicle. In addition, we find that choice behavior does not generalize well over different users.


2021 ◽  
Vol 9 ◽  
Author(s):  
Elias Hartvigsson ◽  
Niklas Jakobsson ◽  
Maria Taljegard ◽  
Mikael Odenberger

Electrification of transportation using electric vehicles has a large potential to reduce transport related emissions but could potentially cause issues in generation and distribution of electricity. This study uses GPS measured driving patterns from conventional gasoline and diesel cars in western Sweden and Seattle, United States, to estimate and analyze expected charging coincidence assuming these driving patterns were the same for electric vehicles. The results show that the electric vehicle charging power demand in western Sweden and Seattle is 50–183% higher compared to studies that were relying on national household travel surveys in Sweden and United States. The after-coincidence charging power demand from GPS measured driving behavior converges at 1.8 kW or lower for Sweden and at 2.1 kW or lower for the United States The results show that nominal charging power has the largest impact on after-coincidence charging power demand, followed by the vehicle’s electricity consumption and lastly the charging location. We also find that the reduction in charging demand, when charging is moved in time, is largest for few vehicles and reduces as the number of vehicles increase. Our results are important when analyzing the impact from large scale introduction of electric vehicles on electricity distribution and generation.


Greenovation ◽  
2020 ◽  
pp. 94-121
Author(s):  
Joan Fitzgerald

Cities have a key role in accelerating the adoption of electric vehicles, particularly in building charging infrastructure. This chapter examines the efforts of five leading cities—three European cities and two in the United States—each with a different set of challenges. It shows that they have different strategies for addressing regulatory and planning issues that determine what types of charging stations can be placed where and how to charge for electricity. Some cities are electrifying their bus fleets and supporting the transition of taxi fleets and delivery vehicles to electric. Several are examining ways to charge using renewable power. And a few cities are pursuing vehicle-to-grid integration—two-way interaction in which cars can push power back into the grid during periods of peak demand. The electrified transportation experiments in these five cities have met largely with success, and their innovations are already spreading to others.


2010 ◽  
Vol 5 (1) ◽  
pp. 75-94 ◽  
Author(s):  
Nuno Luís Madureira

AbstractThis article explains how oil as an energy carrier evolved alongside the technology of the steam engine. In practical terms, fuel oil was adapted to machines that were originally devised to be coal-fuelled and this led to the flexible switchover between energy carriers. The article links the micro account of technological developments with the macro records of energy consumption, to reveal how steam technology set the stage for the commoditization of oil, the customary fuel of the internal combustion engine. The analysis of the oil–steam combine embraces its diffusion across leading producing nations such as Russia and the United States, the diffusion in industrial and transport activities in South America, and the diffusion throughout European navies. What was at stake was the transformation of oil into a geostrategic good and the triggering of an international race for the seizure of fossil fuels.


Author(s):  
Richik Ray

Abstract: In this paper, a MATLAB based Simulink model of a Series-Parallel Hybrid Electric Vehicle is presented. With the advent of Industry 4.0, the usage of Big Data, Machine Learning, Internet of Things, Artificial Intelligence, and similar groundbreaking domains of technology have usurped manual supervision in industrial as well as personal scenarios. This is aided by the drastic shift from orthodox and conventional Internal Combustion Engine based vehicles fuelled by fossil fuels in the order of petrol, diesel, etc., to fully functional electric vehicles developed by renowned companies, for example Tesla. Alongside 100% electric vehicles are hybrid vehicles that function on a system based on the integration of the conventional ICE and the modern Electric Propulsion System, which is referred to as the Hybrid Vehicle Drivetrain. Designs for modern HEVs and EVs are developed on computer software where simulations are run and all the essential parameters for the vehicle’s performance and sustainability are run and observed. This paper is articulated to discuss the parameters of a series-parallel HEV through an indepth MATLAB Simulink design, and further the observations are presented. Keywords: ICE (Internal Combustion Engine), HEV (Hybrid Electric Vehicle), Drivetrain, MATLAB, Simulink, PSD (Power Split Device), Vehicle Dynamics, SOC (State-of-Charge)


2012 ◽  
Vol 608-609 ◽  
pp. 1553-1559
Author(s):  
Wu Wu Tang ◽  
Yu Ming Wu ◽  
Jian Qin

Charging infrastructure is the fundamental conditions of electric vehicles(EV)’s application and dissemination, and advanced charging standards can guide and regulate the harmonious development of EV and infrastructure. In this paper, plenty of and latest EV charging standards were collected at home and abroad, which were compared in different classifications, then the standards differences were analyzed in term of relative merits to provide reference for the future development of EV charging standards in China.


Sign in / Sign up

Export Citation Format

Share Document