scholarly journals Landscape metrics application in ecological and visual landscape assessment

2017 ◽  
pp. 29-50
Author(s):  
Suzana Gavrilovic ◽  
Nevena Vasiljevic ◽  
Boris Radic ◽  
Vladimir Pihler

The development of landscape-ecological approach application in spatial planning provides exact theoretical and empirical evidence for monitoring ecological consequences of natural and/or anthropogenic factors, particularly changes in spatial structures caused by them. Landscape pattern which feature diverse landscape values is the holder of the unique landscape character at different spatial levels and represents a perceptual domain for its users. Using the landscape metrics, the parameters of landscape composition and configuration are mathematical algorithms that quantify the specific spatial characteristics used for interpretation of landscape features and processes (physical and ecological aspect), as well as forms (visual aspect) and the meaning (cognitive aspect) of the landscape. Landscape metrics has been applied mostly in the ecological and biodiversity assessments as well as in the determination of the level of structural change of landscape, but more and more applied in the assessment of the visual character of the landscape. Based on a review of relevant literature, the aim of this work is to show the main trends of landscape metrics within the aspect of ecological and visual assessments. The research methodology is based on the analysis, classification and systematization of the research studies published from 2000 to 2016, where the landscape metrics is applied: (1) the analysis of landscape pattern and its changes, (2) the analysis of biodiversity and habitat function and (3) a visual landscape assessment. By selecting representative metric parameters for the landscape composition and configuration, for each category is formed the basis for further landscape metrics research and application for the integrated ecological and visual assessment of the landscape values. Contemporary conceptualization of the landscape is seen holistically, and the future research should be directed towards the development of integrated landscape assessment as a guideline for spatial development planning.

2022 ◽  
Vol 14 (2) ◽  
pp. 279
Author(s):  
Qiong Wu ◽  
Zhaoyi Li ◽  
Changbao Yang ◽  
Hongqing Li ◽  
Liwei Gong ◽  
...  

Urbanization processes greatly change urban landscape patterns and the urban thermal environment. Significant multi-scale correlation exists between the land surface temperature (LST) and landscape pattern. Compared with traditional linear regression methods, the regression model based on random forest has the advantages of higher accuracy and better learning ability, and can remove the linear correlation between regression features. Taking Beijing’s metropolitan area as an example, this paper conducted multi-scale relationship analysis between 3D landscape patterns and LST using Pearson Correlation Coefficient (PCC), Multiple Linear Regression and Random Forest Regression (RFR). The results indicated that LST was relatively high in the central area of Beijing, and decreased from the center to the surrounding areas. The interpretation effect of 3D landscape metrics on LST was more obvious than that of the 2D landscape metrics, and 3D landscape diversity and evenness played more important roles than the other metrics in the change of LST. The multi-scale relationship between LST and the landscape pattern was discovered in the fourth ring road of Beijing, the effect of the extent of change on the landscape pattern is greater than that of the grain size change, and the interpretation effect and correlation of landscape metrics on LST increase with the increase in the rectangle size. Impervious surfaces significantly increased the LST, while the impervious surfaces located at low building areas were more likely to increase LST than those located at tall building areas. It seems that increasing the distance between buildings to improve the rate of energy exchange between urban and rural areas can effectively decrease LST. Vegetation and water can effectively reduce LST, but large, clustered and irregularly shaped patches have a better effect on land surface cooling than small and discrete patches. The Coefficients of Rectangle Variation (CORV) power function fitting results of landscape metrics showed that the optimal rectangle size for studying the relationship between the 3D landscape pattern and LST is about 700 m. Our study is useful for future urban planning and provides references to mitigate the daytime urban heat island (UHI) effect.


2009 ◽  
Vol 33 (1) ◽  
pp. 31-48 ◽  
Author(s):  
Xiuzhen Li ◽  
Ülo Mander

The aim of this brief overview is to highlight some new and promising research fields in landscape ecology, which is essentially an interdisciplinary field of study. We also analyse the development of some classical branches of landscape ecology regarding pattern and process relationships at broad spatial and temporal scales, such as landscape metrics, the influence of anthropogenic factors and global climate change on landscape development, the fragmentation of ecosystems and disturbances of populations, and material and energy cycling in and between ecosystems.


2014 ◽  
Vol 172 ◽  
pp. 56-64 ◽  
Author(s):  
Juliane Steckel ◽  
Catrin Westphal ◽  
Marcell K. Peters ◽  
Michaela Bellach ◽  
Christoph Rothenwoehrer ◽  
...  

2019 ◽  
Vol 22 (7) ◽  
pp. 1083-1094 ◽  
Author(s):  
Emily A. Martin ◽  
Matteo Dainese ◽  
Yann Clough ◽  
András Báldi ◽  
Riccardo Bommarco ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document