scholarly journals Hemocompatibility and swelling studies of poly(2-hydroxyethyl methacrylate-co-itaconic acid-co-poly(ethylene glycol) dimethacrylate) hydrogels

2011 ◽  
Vol 65 (6) ◽  
pp. 675-685 ◽  
Author(s):  
Sava Dobic ◽  
Jovana Jovasevic ◽  
Marija Vojisavljevic ◽  
Simonida Tomic

In this study novel series of hydrogels, based on 2-hydroxyethyl methacrylate (HEMA), itaconic acid (IA) and poly(ethylene glycol) dimethacrylates (PEGDMA) (of varying molecular weight and concentration) were prepared by free radical crosslinking copolymerization. Preliminary hemocompatibility characterization of hydrogels obtained by hemolytic activity assay indicated good compatibility with blood. Preliminary biocompatibility characterization of P(HEMA/IA/PEGDMA) hydrogels, done by the cytotoxicity assays using the HeLa cell line revails that the cell viability of all samples was the range of 97?100%, with no significant decrease in cell viability with the change of PEGDMA molecular weight and concentration. Swelling studies were conducted for all P(HEMA/IA/PEGDMA) samples in a physiological pH and temperature range and network parameters were determined. Swelling studies showed pH sensitive behaviour, typical for anionic hydrogels, and temperature dependent swelling. The effects of concentration of PEGDMA component on hydrogel swelling properties depend on the PEGDMA molecular weight. The samples with 550PEGDMA show different swelling capacities when 550PEGDMA content is changed, whereas for P(HEMA/IA/875PEGDMA) samples there was practically no difference in equilibrium degree of swelling, qe ,with varying 875PEGDMA content, which trend is the same as in the case of qe versus pH dependences. It was concluded that P(HEMA/IA/PEGDMA) hydrogels show good potential to be used as biomedical materials.

Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1269
Author(s):  
Daniel González-Fernández ◽  
Mercedes Torneiro ◽  
Massimo Lazzari

We provide fundamental guidelines in the form of a tutorial to be taken into account for the preparation and characterization of a specific class of poly(ethylene glycol) (PEG) derivatives, namely azide-terminated PEGs. Special attention is given to the effect of these chain end groups and their precursors on properties affecting the PEGylation of proteins, nanoparticles and nanostructured surfaces. Notwithstanding the presence of 13C satellite peaks, we show that 1H NMR enables not only the routine quantitative determination of chain-end substitution, but is also a unique method to calculate the absolute number average molecular weight of PEG derivatives. In the use of size exclusion chromatography to get molecular weight distributions, we highlight the importance of distinguishing between eventual secondary reactions involving molecular weight changes and the formation of PEG complexes due to residual amounts of metal cations from reactants. Finally, we show that azide end groups affect PEG melting behavior. In contrast to oxygen-containing end groups, azides do not interact with PEG segments, thus inducing defect formation in the crystal lattice and the reduction of crystal sizes. Melting temperature and degree of crystallinity decrease become especially relevant for PEGs with very low molecular weight, and its comprehension is particularly important for solid-state applications.


2015 ◽  
Vol 3 (32) ◽  
pp. 6618-6625 ◽  
Author(s):  
Changjiang Fan ◽  
Chao Zhang ◽  
Liqiong Liao ◽  
Sheng Li ◽  
Weiping Gan ◽  
...  

Ultra-strong and resilient double macromolecular network (DMMN) hydrogels with a more evenly distributed polymer network and a double-network structure have been developed.


Sign in / Sign up

Export Citation Format

Share Document