scholarly journals Identification of emission sources of particle-bound polycyclic aromatic hydrocarbons in the vicinity of the industrial zone of the city of Novi Sad

2013 ◽  
Vol 67 (2) ◽  
pp. 337-348 ◽  
Author(s):  
Natasa Jovcic ◽  
Jelena Radonic ◽  
Maja Turk-Sekulic ◽  
Mirjana Vojinovic-Miloradov ◽  
Srdjan Popov

Data on polycyclic aromatic hydrocarbons (PAHs) in ambient air accessed at selected locations in the vicinity of the industrial zone of the city of Novi Sad, Serbia, have been presented and analyzed in order to determine seasonal and spatial variations and to identify emission sources of particle-bound PAHs. Previous studies have demonstrated that the major contributors of PAHs in urban areas are the emissions from vehicle exhaust, and emissions releases from industrial processes like aluminium production, creosote and wood preservation, waste incineration, cement manufacture, petrochemical and related industries, commercial heat/power production etc. The sampling campaigns have been conducted at three sampling sites, during the two 14-day periods. The first site was situated near industrial area, with a refinery, power plant and heavy-traffic road in the vicinity. The second site was located nearby the heavy traffic area, especially busy during the rush hour. The third site was residential district. Summer sampling period lasted from June 26th to July 10th 2008, while sampling of ambient air during the winter was undertaken from January 22nd to February 5th 2009. Eighty-four (84) air samples were collected using a high volume air sampler TCR Tecora H0649010/ECHO. 16 US EPA polycyclic aromatic hydrocarbons were determined in all samples using a gas chromatographer with a mass spectrometer as a detector (Shimatzu MDGC/GCMS-2010). The total average concentrations of PAHs ranged from 1.21 to 1.77 ng/m3 during the summer period and from 6.31 to 7.25 ng/m3 in the winter. Various techniques, including diagnostic ratio (DR) and principal component analysis (PCA), have been used to define and evaluate potential emission sources of PAHs. Diagnostic ratio analysis indicated that vehicles, diesel or/and gasoline, industrial and combustion emissions were sources of PAHs in the vicinity of the industrial zone. Additionally, principal component analysis was used to constrain the potential sources. The results showed that vehicles are the predominant source of particle-bound PAHs during the whole year, and stationary sources (thermal power and heating plant, oil refinery, individual furnaces) during the winter period.

Author(s):  
Dina Orazbayeva ◽  
Ulzhalgas Karatayeva ◽  
Kulzhan Beysembayeva ◽  
Kulyash Meyramkulova

Solid-phase microextraction in combination with gas chromatography and mass-spectrometry (GC-MS) was used for determination of benzene, toluene, ethylbenzene and o-xylene (BTEX), polycyclic aromatic hydrocarbons (PAH), and for identification of volatile organic compounds (VOCs) in ambient air of the city of Astana, Kazakhstan. The screening of the samples showed the presence of mono- and polycyclic aromatic hydrocarbons, alkanes, alkenes, phenols, and benzaldehydes. The concentrations of naphthalene were 5-7 times higher than the permissible value, it was detected in all studied air samples. Average concentration of naphthalene was 18.4 μg/m3, acenaphthylene – 0.54 μg/m3, acenaphthene – 1.63 μg/m3, fluorene – 0.79 μg/m3, anthracene – 3.27 μg/m3, phenanthrene – 0.22 μg/m3, fluorantene – 0.74 μg/m3, pyrene – 0.73 μg/m3. Average concentrations of BTEX in the studied samples were 31.1, 84.9, 10.8 and 11.6 μg/m3, respectively. Based on the statistical analysis of the concentrations of BTEX and PAH, the main source of city air pollution with them was assumed to be vehicle emissions.


2020 ◽  
Author(s):  
Tatiana Drotikova ◽  
Aasim M. Ali ◽  
Anne Karine Halse ◽  
Helena C. Reinardy ◽  
Roland Kallenborn

Abstract. Polycyclic aromatic hydrocarbons (PAHs) are not declining in Arctic air despite reductions in their global emissions. In Svalbard, the Longyearbyen coal-fired power plant is considered to be one of the major local source of PAHs. Power plant stack emissions and ambient air samples, collected simultaneously 1 km (UNIS) and 6 km (Adventdalen) transect distance, were analyzed (gaseous and particulate phases separately) for 22 nitro-PAHs, 9 oxy-PAHs and 16 parent PAHs by GC/ECNI/MS and GC-MS/MS. Results confirm low level of PAH emissions (∑16 PAHs = 1.5 µg kg−1 coal) from the power plant. Phenathrene, 9,10-anthraquinone, 9-fluorenone, fluorene, fluoranthene, and pyrene accounted for 85 % of the plant emission (not including naphthalene). A dilution effect was observed for the transect ambient air samples, 1.26 ± 0.16 and 0.63 ± 0.14 ng m−3 sum all 47 PAH derivatives for UNIS and Adventdalen, respectively. The PAH profile was homogeneous for these recipient stations with phenathrene and 9-fluorenone being most abundant. Principal component analysis, in combination with PAH diagnostic ratios and literature data on different source-specific markers, confirmed coal combustion, gasoline, and diesel traffic as the predominant sources of PAHs. Secondary atmospheric formation of 9-nitroanthracene and 2+3-nitrofluoranthene was evaluated and concluded. Results also indicate that ambient PAH concentrations were affected by precipitation events, and specific humidity is an essential parameter influencing PAH scavenging from the air. The present study contributes important data which can be utilized to eliminate uncertainties in model predictions that aim to assess the extent and impacts of Arctic atmospheric contaminants.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Anita Lakhani

16 US EPA priority polycyclic aromatic hydrocarbons (PAHs) were quantified in total suspended ambient particulate matter (TSPM) collected from an industrial site in Agra (India) using gas chromatography. The major industrial activities in Agra are foundries that previously used coal and coke as fuel in cupola furnaces. These foundries have now switched over to natural gas. In addition, use of compressed natural gas has also been promoted and encouraged in automobiles. This study attempts to apportion sources of PAH in the ambient air and the results reflect the advantages associated with the change of fuel. The predominant PAHs in TSPM include high molecular weight (HMW) congeners BghiP, DbA, IP, and BaP. The sum of 16 priority PAHs had a mean value of 72.7 ± 4.7 ng m−3. Potential sources of PAHs in aerosols were identified using diagnostic ratios and principal component analysis. The results reflect a blend of emissions from diesel and natural gas as the major sources of PAH in the city along with contribution from emission of coal, coke, and gasoline.


2012 ◽  
Vol 19 (4) ◽  
pp. 585-595 ◽  
Author(s):  
Tomasz Ciesielczuk ◽  
Tomasz Olszowski ◽  
Marcin Prokop ◽  
Andrzej Kłos

Abstract The moss Pleurozium schreberi was used to evaluate the emission of polycyclic aromatic hydrocarbons (PAHs) at Polish cemeteries on the All Saints' Day, when Poles traditionally light candles and candle lamps in memory of the deceased. Moss samples were exposed for 7 days at 4 cemeteries and, for comparison, in a city centre and in a rural area. During exposition, the mean content of 16 monitored PAHs in the samples increased by 455 ng/g at the cemeteries and by 689 ng g-1 in the city centre. In the rural area, the samples showed no statistically significant changes. PAHs whose content increased only in the moss samples exposed at the cemeteries included naphthalene, pyrene, benzo[b]fluoranthene together with benzo[k]fluoranthene, benzo[g,h,i]perylene, indeno[1,2,3-cd]pyrene and dibenzo[a,h]anthracene. The concentrations of other PAHs increased in samples exposed in the city centre and at two cemeteries located in the suburban areas. The results presented confirm the possibility of using mosses in biomonitoring of PAHs.


2004 ◽  
Vol 327 (1-3) ◽  
pp. 135-146 ◽  
Author(s):  
Guor-Cheng Fang ◽  
Cheng-Nan Chang ◽  
Yuh-Shen Wu ◽  
Peter Pi-Cheng Fu ◽  
I-Lin Yang ◽  
...  

Author(s):  
Marta Oliveira ◽  
Sílvia Capelas ◽  
Cristina Delerue-Matos ◽  
Simone Morais

Grilling activities release large amounts of hazardous pollutants, but information on restaurant grill workers’ exposure to polycyclic aromatic hydrocarbons (PAHs) is almost inexistent. This study assessed the impact of grilling emissions on total workers’ exposure to PAHs by evaluating the concentrations of six urinary biomarkers of exposure (OHPAHs): naphthalene, acenaphthene, fluorene, phenanthrene, pyrene, and benzo(a)pyrene. Individual levels and excretion profiles of urinary OHPAHs were determined during working and nonworking periods. Urinary OHPAHs were quantified by high-performance liquid-chromatography with fluorescence detection. Levels of total OHPAHs (∑OHPAHs) were significantly increased (about nine times; p ≤ 0.001) during working comparatively with nonworking days. Urinary 1-hydroxynaphthalene + 1-hydroxyacenapthene and 2-hydroxyfluorene presented the highest increments (ca. 23- and 6-fold increase, respectively), followed by 1-hydroxyphenanthrene (ca. 2.3 times) and 1-hydroxypyrene (ca. 1.8 times). Additionally, 1-hydroxypyrene levels were higher than the benchmark, 0.5 µmol/mol creatinine, in 5% of exposed workers. Moreover, 3-hydroxybenzo(a)pyrene, biomarker of exposure to carcinogenic PAHs, was detected in 13% of exposed workers. Individual excretion profiles showed a cumulative increase in ∑OHPAHs during consecutive working days. A principal component analysis model partially discriminated workers’ exposure during working and nonworking periods showing the impact of grilling activities. Urinary OHPAHs were increased in grill workers during working days.


Sign in / Sign up

Export Citation Format

Share Document