scholarly journals The application of citric acid solutions for selective removal of zinc from steelmaking dust

Author(s):  
K. Gargul ◽  
P. Handzlik ◽  
P. Palimąka ◽  
A. Pawlik

Steelmaking dust is one of the wastes which are produced by ironworks. This kind of waste is a byproduct made mainly in electric arc furnace. Zinc content in dust is different and depends on the charge processed in the furnace. The basic technology used for recycling steelmaking dust is Waelz process however it requires a large amount of reducer and generates a lot of waste which need to be stored. First stage in this study was to analyze if steelmaking dust is safe to be exposed for atmospheric conditions. To verify this subject the dust exposed for two kinds of leaching, in standards of TCLP and EN-12457-2. The amount of extracted elements was too large that's why steelmaking dust must be treated as dangerous waste. Leaching in citric acid solutions was divided in four series. The first one was set to determine the time and temperature for most selective zinc leaching. Next series optimized three leaching parameters which were: citric acid concentration, liquid to solid phase ratio (l/s), and the stirring speed. Performed experiments showed the optimal conditions for selective leaching: temperature of 50 ?C, leaching time of 60 minutes, citric acid concentration of 0.5 mol/dm3, l/s ratio of 10, and stirring speed of 250 rpm.

Inventions ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 50
Author(s):  
Silvia Lazăr (Mistrianu) ◽  
Oana Emilia Constantin ◽  
Nicoleta Stănciuc ◽  
Iuliana Aprodu ◽  
Constantin Croitoru ◽  
...  

(1) Background: This study is designed to extract the bioactive compounds from beetroot peel for future use in the food industry. (2) Methods: Spectrophotometry techniques analyzed the effect of conventional solvent extraction on betalains and polyphenolic compounds from beetroot peels. Several treatments by varying for factors (ethanol and citric acid concentration, temperature, and time) were applied to the beetroot peel samples. A Central Composite Design (CCD) has been used to investigate the effect of the extraction parameters on the extraction steps and optimize the betalains and total polyphenols extraction from beetroot. A quadratic model was suggested for all the parameters analyzed and used. (3) Results: The maximum and minimum variables investigated in the experimental plan in the coded form are citric acid concentration (0.10–1.5%), ethanol concentration (10–50%), operating temperature (20–60 °C), and extraction time (15–50 min). The experimental design revealed variation in betalain content ranging from 0.29 to 1.44 mg/g DW, and the yield of polyphenolic varied from 1.64 to 2.74 mg/g DW. The optimized conditions for the maximum recovery of betalains and phenols were citric acid concentration 1.5%, ethanol concentration 50%, temperature 52.52 °C, and extraction time 49.9 min. (4) Conclusions: Overall, it can be noted that the extraction process can be improved by adjusting operating variables in order to maximize the model responses.


Author(s):  
Juliana Zanol Merck ◽  
Camila Suliani Raota ◽  
Jocelei Duarte ◽  
Camila Baldasso ◽  
Janaina Da Silva Crespo ◽  
...  

The pollution of hydric sources by pharmaceuticals is an issue in many countries, particularly in Brazil. The presence of these substances causes deleterious effects on the environment and human health. One of the main sources of this contamination is domestic sewage, due to the expressive amount of medicines released in their unaltered form. Unfortunately, traditional wastewater treatment is not effective for the removal of pharmaceuticals and, for this reason, membrane technology is an attractive alternative to overcome this issue. In this regard, hydrophilic polymers, such as poly(vinyl alcohol) (PVA), are the most suitable. However, their high affinity with water causes intense swelling, leading to severe modifications in the membrane properties. In view of all these facts, the present work evaluated the swelling of PVA-based membranes, with the aim of finding the membrane preparation method that has the lowest swelling, thereby providing the most suitable characteristics for pharmaceutical removal from wastewater. The membranes were prepared by the casting of a polymeric solution, with PVA as a basis polymer, citric acid as a crosslink agent and glycerol and silver nanoparticles as performance additives. The process optimization was performed using a design of experiments with posterior analysis by the response surface methodology (RSM). The RSM assessed the effect on the membrane swelling of the factors, including citric acid concentration and the time and temperature of crosslinking. The membrane characterization was performed by Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy coupled with a field emission gun (SEM-FEG) and water contact angle (WCA) measurements. Overall, the condition that showed the lowest swelling was obtained with 10% of citric acid and crosslinking for 4 h at 130 °C. Under these conditions, the membrane had a mass swelling of 42% and a dimensional swelling of 24%. Additionally, our statistical analysis revealed that the factors with the dominant effects were the citric acid concentration and the temperature of crosslinking. The FT-IR analysis suggested that the crosslinking occurred by an esterification reaction, as showed by the stretching frequencies of C=O at 1710 cm-1 and ester C-O at 1230 cm-1. Moreover, the SEM-FEG images revealed a smooth and flat surface and a dense cross section with a thickness of ~113 μm. Concerning the WCA, the angle was at ~80°, which is characteristic of hydrophilic materials. Finally, the data suggested that it is possible to optimize the membrane preparation process with adequate properties so that it can be subsequently applied to the removal of pharmaceuticals from hospital wastewater.


2015 ◽  
pp. 101-104
Author(s):  
Andrea Nemes ◽  
Edina Baranyai ◽  
Judit Remenyik

The iron concentration of ’Csengődi csokros’, ’Debreceni- and ’Érdi bőtermő’ , ‘Éva’, ’Kántorjánosi’ ,’Petri’ and the ’Újfehértói fürtös’ cultivars was determined by ICP-MS. Furthermore the Vitamin C, L-Malis acid and Citric acid concentration of samples were measured. Our results show that large amount Fe2+ (average 20.5 mg kg-1) accumulates in the pulp of sour cherry. Besides, the concentration of Vitamin C, L-Malis acid, that increase the absorption of iron, are high. Based on these results, the sour cherry and the products of sour cherry play an important role in the forming of iron content in body.


Sign in / Sign up

Export Citation Format

Share Document