scholarly journals Calculation of the thermodynamic properties of liquid Ag-In-Sb alloys

2006 ◽  
Vol 71 (3) ◽  
pp. 203-211 ◽  
Author(s):  
Dragana Zivkovic ◽  
Dragan Manasijevic ◽  
Ivan Mihajlovic ◽  
Zivan Zivkovic

The results of calculations of the thermodynamic properties of liquid Ag-In-Sb alloys are presented in this paper. The Redlich-Kister-Muggianu model was used for the calculations. Based on known thermodynamic data for constitutive binary systems and available experimental data for the investigated ternary system, the ternary interaction parameter for the liquid phase in the temperature range 1000-1200 K was determined. Comparison between experimental and calculated results showed their good mutual agreement.

2013 ◽  
Vol 67 (1) ◽  
pp. 157-164 ◽  
Author(s):  
Lidija Gomidzelovic ◽  
Ivan Mihajlovic ◽  
Ana Kostov ◽  
Dragana Zivkovic

In the paper are presented the results of thermodynamic analysis of Cu-Al-Zn ternary system, which belongs to a group of copper-based shape memory materials. General solution model was used for calculation of thermodynamic properties in the temperature interval from 1373 to 2173 K, in sections from Cu, Al and Zn corner, respectively, with following ratios of 1:3, 1:1 and 3:1. Also, on the basis of the obtained results, ternary interaction parameters were determined using Mathematical Modeling System (MLAB).


2013 ◽  
Vol 49 (3) ◽  
pp. 347-352 ◽  
Author(s):  
V. Gandova ◽  
G. Vassilev

The thermochemical properties of metals and alloys are essential for the chemists to invent and improve metallurgical and materials? design processes. However, the properties of multicomponent systems are still scarcely known due to experimental difficulties and the large number of related systems. Thus, the modelling of some thermodynamic properties would be advantageous when experimental data are missing. Considering mentioned facts, geometric models to estimate some thermodynamic properties for the liquid phase of the Ni-Bi-Zn systems. The calculations have been performed in a wide temperature range (1000-2000 K). Ternary interaction parameters for the liquid phase allowing molar Gibbs excess energy calculation have been determined.


2011 ◽  
Vol 9 (1) ◽  
pp. 149-156 ◽  
Author(s):  
Nikolina Milcheva ◽  
Jolanta Romanowska ◽  
Gueorgui Vassilev

AbstractExperimental data of bismuth activity coefficients at 1773 K were obtained by isopiestic method and compared to calculated values. Thermodynamic properties of the Sn-Ni-Bi liquid phase were estimated by means of the general solution model and by the methods of Kohler. Description of the ternary liquid phase (Gibbs excess energy dependence on the temperature and the composition) was achieved by using available thermodynamic data of the constitutive binary systems (Ni-Bi, Sn-Bi, Sn-Ni). A comparison between calculated quantities and experimental data wasconducted. The present assessment with thermodynamically optimized values of the system Sn-Ni-Bi (obtained by the CALPHAD approach) was in good agreement. The suggested appearance of a liquid phase miscibility gap at high temperatures is in agreement with the experimental bismuth activity data and with the assessed thermochemical functions.


2016 ◽  
Vol 35 (1) ◽  
pp. 37-45
Author(s):  
Maryana Zagula-Yavorska ◽  
Jolanta Romanowska ◽  
Sławomir Kotowski ◽  
Jan Sieniawski

AbstractThermodynamic properties of ternary Al-Ni-Pd system, such as exGAlNPd, µAl(AlNiPd),µNi(AlNiPd) and µPd(AlNiPd) at 1,373 K, were predicted on the basis of thermodynamic properties of binary systems included in the investigated ternary system. The idea of predicting exGAlNiPd values was regarded as calculation of values of the exG function inside a certain area (a Gibbs triangle) unless all boundary conditions, that is values of exG on all legs of the triangle are known (exGAlNi, exGAlPd, exGNiPd). This approach is contrary to finding a function value outside a certain area, if the function value inside this area is known. exG and LAl,Ni,Pd ternary interaction parameters in the Muggianu extension of the Redlich–Kister formalism were calculated numerically using the Excel program and Solver. The accepted values of the third component xx differed from 0.01 to 0.1 mole fraction. Values of LAlNiPd parameters in the Redlich–Kister formula are different for different xx values, but values of thermodynamic functions: exGAlNiPd, µAl(AlNiPd), µNi(AlNiPd) and µPd(AlNiPd) do not differ significantly for different xx values. The choice of xx value does not influence the accuracy of calculations.


2017 ◽  
Vol 17 (3) ◽  
pp. 500 ◽  
Author(s):  
Rendra Panca Anugraha ◽  
Zul Akbar Andi Picunang ◽  
Annas Wiguno ◽  
Rizky Tetrisyanda ◽  
Kuswandi Kuswandi ◽  
...  

In this work, vapor pressure of binary systems for isooctane + ethanol, isooctane + n-butanol and ethanol + n-butanol and ternary system for isooctane + ethanol + n-butanol were measured in the temperature range from 313.15 to 318.15 K using the inclined ebulliometer. The experimental results showed that the existence of n-butanol in isooctane decreases the vapor pressure of mixture, while increasing n-butanol fraction in ternary isooctane-ethanol-n-butanol mixture decreased vapor pressure of mixture. Experimental data for binary systems studied were correlated with Wilson, NRTL and UNIQUAC models with average relative deviation (ARD) of 3.5%. The optimized binary parameter pairs obtained in this work were used to estimate the ternary system. The Wilson model gave the best performance for estimation of ternary system with ARD of 5.4%. All systems studied showed non-ideal solution with positive deviation from Raoult’s law.


2002 ◽  
Vol 755 ◽  
Author(s):  
Shihuai Zhou ◽  
Long-Qing Chen ◽  
Rebecca A. MacKay ◽  
Zi-Kui Li u

ABSTRACTThe phase equilibria and thermodynamic properties of the ternary Ni-Al-Ta system on Ni-rich side were analyzed. Thermodynamic descriptions of the liquid, γ-fcc, γ'-L12, and π-Ni6AlTa phases were obtained using the CALPHAD (CALculation of PHase Diagrams) technique. The thermodynamics of γ-fcc and γ'-L12 phases were modeled with a single Gibbs energy function taking into account the crystallographic relation between the two phases. The ternary interaction parameters of the liquid and fcc phases were also determined. The calculated phase diagrams of the ternary Ni-Al-Ta system show a good agreement with experimental data.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Daming Gao ◽  
Hui Zhang ◽  
Peter Lücking ◽  
Hong Sun ◽  
Jingyu Si ◽  
...  

Vapor-liquid equilibrium (VLE) data for the strongly associated ternary system methanol + water + ethanoic acid and the three constituent binary systems have been determined by the total pressure-temperature-liquid-phase composition-molar excess enthalpy of mixing of the liquid phase (p, T, x, HmE) for the binary systems using a novel pump ebulliometer at 101.325 kPa. The vapor-phase compositions of these binary systems had been calculated from Tpx and HmE based on the Q function of molar excess Gibbs energy through an indirect method. Moreover, the experimental T, x data are used to estimate nonrandom two-liquid (NRTL), Wilson, Margules, and van Laar model parameters, and these parameters in turn are used to calculate vapor-phase compositions. The activity coefficients of the solution were correlated with NRTL, Wilson, Margules, and van Laar models through fitting by least-squares method. The VLE data of the ternary system were well predicted from these binary interaction parameters of NRTL, Wilson, Margules, and van Laar model parameters without any additional adjustment to build the thermodynamic model of VLE for the ternary system and obtain the vapor-phase compositions and the calculated bubble points.


Sign in / Sign up

Export Citation Format

Share Document