scholarly journals Prediction of phase equilibria in the In-Sb-Pb system

2008 ◽  
Vol 73 (3) ◽  
pp. 377-384
Author(s):  
Dusko Minic ◽  
Dragan Manasijevic ◽  
Dragana Zivkovic ◽  
Nada Strbac ◽  
Zvonimir Stankovic

Binary thermodynamic data, successfully used for phase diagram calculations of the binary systems In-Sb, Pb-Sb and In-Pb, were used for the prediction of the phase equilibria in the ternary In-Sb-Pb system. The predicted equilibrium phase diagram of the vertical Pb-InSb section was compared with the results of differential thermal analysis (DTA) and optical microscopy. The calculated phase diagram of the isothermal section at 300 ?C was compared with the experimentally (SEM, EDX) determined composition of phases in the chosen alloys after annealing. Very good agreement between the binary-based thermodynamic prediction and the experimental data was found in all cases. The calculated liquidus projection of the ternary In-Sb-Pb system is also presented.

2013 ◽  
Vol 58 (2) ◽  
pp. 541-548 ◽  
Author(s):  
B. Onderka ◽  
D. Jendrzejczyk-Handzlik ◽  
K. Fitzner

Using experimental data available in the literature, two binary systems, namely Cu-Pb and Fe-Pb were recalculated. Next, accepting Cu-Fe phase diagram assessment as given by Ansara and Jansson, the ternary Cu-Fe-Pb system was analyzed. Calculated equilibrium lines and thermodynamic functions are compared with existing experimental data. Good agreement was found between the calculated diagram and the experimental results. Having the system optimized, functional dependences of the logarithms of the activity coefficients on temperature and concentrations for Cu, Fe and Pb in the liquid solution are given.


2015 ◽  
Vol 1743 ◽  
Author(s):  
L. Luneville ◽  
G. Demange ◽  
V. Pontikis ◽  
D. Simeone

ABSTRACTThis work shows that realistic irradiation-induced phase separation and the resulting microstructures can be obtained via an adapted Phase Field (PF) modelling combined with atomistic Monte Carlo simulations in the pseudo-grand canonical ensemble. The last allow for calculating the equilibrium phase diagram of the silver-copper alloy, chosen as a model of binary systems with large miscibility gap and, for extracting the parameters of the excess free-energy PF functional. Relying on this methodology, the equilibrium phase diagram of the alloy is predicted in excellent agreement with its experimental counterpart whereas, under irradiation, the predicted microstructures are functions of the irradiation parameters. Different irradiation conditions trigger the formation of various microstructures consistently presented as a non-equilibrium “phase diagram” aiming at facilitating the comparison with experimental observations.


2021 ◽  
Vol 410 ◽  
pp. 725-729
Author(s):  
Larisa A. Makrovets ◽  
Olga V. Samoilova ◽  
Igor V. Bakin

Thermodynamic modeling of phase equilibria with the subsequent construction of the phase diagram of the SrO–Al2O3 system has been carried out. To calculate the activities of the oxide melt in the course of this work, we used the approximation of the theory of subregular ionic solutions, with the most optimal values of the energy parameters Q1112 = –104 349: Q1122 = –217 689; Q1222 = –104 436 J/mole. The results obtained for the liquidus line in this work are in good agreement with the literature experimental data. In the course of the calculation, the values of the equilibrium constants for the formation of strontium aluminates from the components of the oxide melt were estimated.


2017 ◽  
Vol 898 ◽  
pp. 1042-1047
Author(s):  
M.H. Rong ◽  
X.L. Chen ◽  
Jiang Wang ◽  
S.D. Lin ◽  
G.H. Rao ◽  
...  

The experimental data of phase equilibria and thermodynamic properties of the Fe-RE (RE=Ho, Er, Tm, Sm) binary systems were reviewed. The previous thermodynamic calculation of the Fe-RE (RE=Ho, Er, Tm, Sm) binary systems were discussed based on the comparison of the calculated phase diagram and thermodynamic properties with the experimental data. The compared results show that more experimental information of phase diagram and thermodynamic properties in the Fe-RE (RE=Ho, Er, Tm, Sm) binary systems should be determined and then thermodynamic re-calculation of these binary systems would be performed to develop compatible and available thermodynamic database of the RE-Fe-B ternary systems. It is indispensable to study the relations between alloy compositions, microstructure and magnetic properties of novel Nd-Fe-B-based permanent magnets.


2013 ◽  
Vol 765 ◽  
pp. 3-7 ◽  
Author(s):  
Yong Chun Guo ◽  
Jian Ping Li ◽  
Jin Shan Li ◽  
Zhong Yang ◽  
Ping Wang

The Mg-rich corner of the equilibrium phase diagram of the Mg-Zn-Gd system has been calculated in detail using the phase diagram calculation software PANDAT and the thermodynamic database for Mg alloys. The calculated phase diagram includes the liquidus projection, isothermal sections and vertical sections. It is found that an increase of Zn content in the Mg-Gd alloy reduces the phase field of α-Mg + GdMg5. Based on the calculated phase diagrams, two alloys, Mg-5.5Zn-2Gd-0.5Zr and Mg-1.6Gd-5.5Zn-0.5Zr (wt.%), denoted as ZGK620 and ZGK616, were developed and their solidification and precipitation processes were analyzed in detail. The optimized thermal mechanical processing and heat-treatment processes were defined by referring to the calculated phase diagrams of the Mg-Zn-Gd system.


2003 ◽  
Vol 10 (04) ◽  
pp. 677-683 ◽  
Author(s):  
E. B. Hannech ◽  
N. Lamoudi ◽  
N. Benslim ◽  
B. Makhloufi

Intermetallic formation at 425°C in the aluminum–copper system has been studied by scanning electron microscopy using welded diffusion couples. Several Al–Cu phases predicted by the equilibrium phase diagram of the elements and voids taking place in the diffusion zone have been detected in the couples. The predominant phases were found to be Al 2 Cu 3 and the solid solution of Al in Cu, α. The growth of the intermetallic layer obeyed the parabolic law.


Author(s):  
Farida Benmouna ◽  
Abdelylah Daoudi ◽  
Fr�d�rick Roussel ◽  
Jean-Marc Buisine ◽  
Xavier Coqueret ◽  
...  

2018 ◽  
Vol 383 ◽  
pp. 31-35 ◽  
Author(s):  
Alexey Rodin ◽  
Nataliya Goreslavets

The study of diffusion processes in the aluminum - copper system was carried out at the temperature 350 and 520 °C. Special attention was paid on the chemical composition of the system near Al/Cu interface. It was determined that the intermediate phases in the system, corresponding to the equilibrium phase diagram, were not formed at low temperature. At high temperature the intermediate phases forms starting with Cu - rich phases. In both cases supersaturated solid solution of copper in aluminum could be observed near the interface.


2017 ◽  
Vol 53 (2) ◽  
pp. 85-93 ◽  
Author(s):  
J. Zhou ◽  
L. Zhang ◽  
L. Chen ◽  
Y. Du ◽  
Z.K. Liu

A critical thermodynamic assessment of the metastable c-TiAlZrN coatings, which are reported to spinodally decompose into triple domains, i.e., c-TiN, c-AlN, and c-ZrN, was performed via the CALculation of PHAse Diagram (CALPHAD) technique based on the limited experimental data as well as the first-principles computed free energies. The metastable c-TiAlZrN coatings were modeled as a pseudo-ternary phase consisting of c-TiN, c-AlN and c-ZrN species, and described using the substitutional solution model. The thermodynamic descriptions for the three boundary binaries were directly taken from either the CALPHAD assessment or the first-principles results available in the literature except for a re-adjustment of the pseudo-binary c-AlN/c-ZrN system based on the experimental phase equilibria in the pseudo-ternary system. The good agreement between the calculated phase equilibria and the experimental data over the wide temperature range was obtained, validating the reliability of the presently obtained thermodynamic descriptions for the c-TiAlZrN system. Based on the present thermodynamic description, different phase diagrams and thermodynamic properties can be easily predicted. It is anticipated that the present thermodynamic description of the metastable c-TiAlZrN coatings can serve as the important input for the later quantitative description of the microstructure evolution during service life.


Sign in / Sign up

Export Citation Format

Share Document