intermetallic formation
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 17)

H-INDEX

21
(FIVE YEARS 2)

2022 ◽  
Vol 142 ◽  
pp. 107465
Author(s):  
L. Peng ◽  
G. Zeng ◽  
J. Xian ◽  
C.M. Gourlay

Author(s):  
Bo Chi ◽  
Zhiming Shi ◽  
Cunquan Wang ◽  
Liming Wang ◽  
Hao Lian ◽  
...  

Abstract Near-eutectic Al-Si alloys have low strength and high brittleness because of the presence of many eutectic b-Si flakes, needle-like Al-Fe-Si intermetallics, and coarse α-Al grains. This study disclosed the effects of cerium-rich RE (rare earth) element modification on orientation characters of crystals, formation of Al-Ce compounds, and microstructural refinement to improve the microstructure and mechanical properties of the alloys. The RE addition depressed preferential growth along the close-packed and/or sub-closepacked planes and promoted growth along the non-closepacked planes, in which La and other elements were dissolved into needle-like Al11Ce3 phase. When the temperature decreased, Al11Ce3 was preferentially crystallized from the melts and then devitrified by attaching to the surface of β-Al5FeSi needles. Moreover, many small Al11Ce3 particles were precipitated in the matrix and on the Si surface by a T6 heat treatment. Eutectic β-Si phases were constructed into discontinuous networks, short rods, and even particles by RE additions, which were further transformed into fine nodules following the T6 treatment. α-Al grains and primary β-Al5FeSi needles were simultaneously refined. The addition of 1.0 wt.% REs and subsequent T6 treatment yielded the highest tensile strength, elongation, and hardness of the alloy.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3283 ◽  
Author(s):  
Khin Sandar Tun ◽  
Akshay Padnuru Sripathy ◽  
Sravya Tekumalla ◽  
Manoj Gupta

In the current study, metal–(metal + ceramic) composites composed of biocompatible elements, magnesium (Mg), zinc (Zn), calcium (Ca) and manganese (Mn) were synthesized using a sinter-less powder metallurgy method. The composite has a composition of Mg49Zn49Ca1Mn1 (wt.%) in which the compositional ratio between Mg and Zn was chosen to be near eutectic Mg-Zn composition. The synthesis method was designed to avoid/minimize intermetallic formation by using processing temperatures lower than the Mg-Zn binary eutectic temperature (~ 340 °C). The synthesis process involved extrusion of green compacts at two different temperatures, 150 °C and 200 °C, without sintering. Extrusion was performed directly on the green compacts as well as on the compacts soaked at temperatures of 150 °C and 200 °C, respectively. Microstructure and mechanical properties of the materials synthesized under various processing conditions were investigated. Effect of extrusion temperature as well as soaking temperature on the materials’ properties were also evaluated in details and different properties showed an optimum under different conditions. All the synthesized materials showed no evidence of intermetallic formation which was confirmed by SEM/EDS, XRD, and Differential Scanning Calorimetry (DSC) techniques. The study establishes development of unconventional metal–(metal + ceramic) eco-friendly composites and provides important insight into realizing certain properties without using sintering step thus to minimize the energy consumption of the process. The study also highlights the use of magnesium turnings (recyclability) to develop advanced materials.


2020 ◽  
Vol 826 ◽  
pp. 154221 ◽  
Author(s):  
Shiqian Liu ◽  
Dongdong Qu ◽  
Stuart McDonald ◽  
Qinfen Gu ◽  
Syo Matsumura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document