scholarly journals Nucleus-independent chemical shift profiles along the intrinsic distortion path for Jahn-Teller active molecules. Study on cyclopentadienyl radical and cobaltocene

2015 ◽  
Vol 80 (7) ◽  
pp. 877-888 ◽  
Author(s):  
Ljubica Andjelkovic ◽  
Marko Peric ◽  
Matija Zlatar ◽  
Maja Gruden-Pavlovic

The aromatic/antiaromatic behavior of the cyclopentadienyl anion (Cp-), bis(?5-cyclopentadienyl)iron(II) (Fe(Cp)2), as well as of the Jahn-Teller (JT) active cyclopentadienyl radical (Cp?) and bis(?5-cyclopentadienyl)cobalt(II) (Co(Cp)2) has been investigated using Density Functional Theory (DFT) calculations of the Nuclear Independent Chemical Shifts (NICS). According to the NICS values, pentagon ring in Fe(Cp)2 is more aromatic than isolated Cp-. The NICS parameters have been scanned along the Intrinsic Distortion Path (IDP) for Cp? and Co(Cp)2 showing antiaromaticity, which decreases with increasing deviation from high symmetry D5h to low symmetry (LS) C2v. Changes in the NICS values along the IDP revealed that Co(Cp)2 in the LS nuclear arrangement has aromatic character, in contrast to the case of Cp?

2020 ◽  
Author(s):  
Zi Cheng Wong ◽  
Liviu Ungur

<div>The vibronic coupling constants of the cyclopentadienyl radical have been calculated with G<sub>0</sub>W<sub>0</sub>, HF, and DFT with various exchange-correlation functionals. The vibronic coupling constants for HF and DFT were derived using the gradients of the eigenvalues of the degenerate HOMOs of the closed-shell cyclopentadienyl anion, while the gradients of the corresponding quasiparticle energy levels were used in the case of G<sub>0</sub>W<sub>0</sub>. The differences between the linear vibronic constants obtained using HF and DFT were found to be small, and reduced further when the G<sub>0</sub>W<sub>0</sub> correction is applied to HF and DFT. Finally, the linear vibronic coupling constants calculated with G<sub>0</sub>W<sub>0</sub> were found to agree well with the values obtained using high level wave function methods in the literature, which suggests that G<sub>0</sub>W<sub>0</sub> can be a useful tool towards the study of vibronic coupling.</div>


2020 ◽  
Author(s):  
Zi Cheng Wong ◽  
Liviu Ungur

<div>The vibronic coupling constants of the cyclopentadienyl radical have been calculated with G<sub>0</sub>W<sub>0</sub>, HF, and DFT with various exchange-correlation functionals. The vibronic coupling constants for HF and DFT were derived using the gradients of the eigenvalues of the degenerate HOMOs of the closed-shell cyclopentadienyl anion, while the gradients of the corresponding quasiparticle energy levels were used in the case of G<sub>0</sub>W<sub>0</sub>. The differences between the linear vibronic constants obtained using HF and DFT were found to be small, and reduced further when the G<sub>0</sub>W<sub>0</sub> correction is applied to HF and DFT. Finally, the linear vibronic coupling constants calculated with G<sub>0</sub>W<sub>0</sub> were found to agree well with the values obtained using high level wave function methods in the literature, which suggests that G<sub>0</sub>W<sub>0</sub> can be a useful tool towards the study of vibronic coupling.</div>


2018 ◽  
Vol 73 (10) ◽  
pp. 725-731
Author(s):  
Karolina Jasiak ◽  
Agnieszka Kudelko ◽  
Katarzyna Gajda ◽  
Błażej Dziuk ◽  
Bartosz Zarychta ◽  
...  

AbstractThe crystal and molecular structures of N′-(2-furylmethylidene)-3-(3-pyridyl)acrylohydrazide and N′-(2-thienylmethylidene)-3-(3-pyridyl)acrylohydrazide are reported, and the influence of the type of the heteroatom on the aromaticity of the aromatic rings is discussed. Both molecules are nearly planar. The geometry of the acrylohydrazide arrangement is comparable to that of homologous compounds. Density functional theory (DFT) calculations were performed in order to analyze the changes in the geometry of the studied compounds in the crystalline state and for the isolated molecule. The most significant changes were observed in the values of the N–N and C–N bond lengths. The harmonic oscillator model of aromaticity index, calculated for the furan and thiophene rings, demonstrated a noticeable increase in aromaticity in comparison to isolated rings and their DFT-calculated structures. By contrast, the nucleus independent chemical shift index indicated a decrease in aromatic character of the rings containing heteroatoms.


2019 ◽  
Vol 23 (2) ◽  
pp. 205-213
Author(s):  
Dorra Kanzari-Mnallah ◽  
Med L. Efrit ◽  
Jiří Pavlíček ◽  
Frédéric Vellieux ◽  
Habib Boughzala ◽  
...  

Thioxo, Oxo and Seleno diastereomeric cyclophosphamides containing 1,3,2- dioxaphosphorinane are prepared by a one-step chemical reaction. Their structural determination is carried out by means of Nuclear Magnetic Resonance NMR (31P, 1 H, 13C) and High-Resolution Mass Spectroscopy (HRMS). The conformational study of diastereomeric products is described. Density Functional Theory (DFT) calculations allowed the identification of preferred conformations. Experimental and calculated 31P, 13C, 1H NMR chemical shifts are compared. The molecular structure of the 2-Benzylamino-5-methyl-5- propyl-2-oxo-1,3,2-dioxaphosphorinane (3d) has been determined by means of crystal Xray diffraction methods.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
S. X. M. Riberolles ◽  
T. V. Trevisan ◽  
B. Kuthanazhi ◽  
T. W. Heitmann ◽  
F. Ye ◽  
...  

AbstractKnowledge of magnetic symmetry is vital for exploiting nontrivial surface states of magnetic topological materials. EuIn2As2 is an excellent example, as it is predicted to have collinear antiferromagnetic order where the magnetic moment direction determines either a topological-crystalline-insulator phase supporting axion electrodynamics or a higher-order-topological-insulator phase with chiral hinge states. Here, we use neutron diffraction, symmetry analysis, and density functional theory results to demonstrate that EuIn2As2 actually exhibits low-symmetry helical antiferromagnetic order which makes it a stoichiometric magnetic topological-crystalline axion insulator protected by the combination of a 180∘ rotation and time-reversal symmetries: $${C}_{2}\times {\mathcal{T}}={2}^{\prime}$$ C 2 × T = 2 ′ . Surfaces protected by $${2}^{\prime}$$ 2 ′ are expected to have an exotic gapless Dirac cone which is unpinned to specific crystal momenta. All other surfaces have gapped Dirac cones and exhibit half-integer quantum anomalous Hall conductivity. We predict that the direction of a modest applied magnetic field of μ0H ≈ 1 to 2 T can tune between gapless and gapped surface states.


2021 ◽  
Vol 7 (7) ◽  
pp. 101
Author(s):  
Ian Shuttleworth

A comparative study of the unreacted and reacted uniaxially strained Pt(111) and the layered (111)-Pt/Ni/Pt3Ni and (111)-Pt/Ni/PtNi3 surfaces has been performed using density functional theory (DFT). An in-depth study of the unreacted surfaces has been performed to evaluate the importance of geometric, magnetic and ligand effects in determining the reactivity of these different Pt surfaces. An analysis of the binding energies of oxygen and hydrogen over the high-symmetry binding positions of all surfaces has been performed. The study has shown that O and H tend to bind more strongly to the (111)-Pt/Ni/Pt3Ni surface and less strongly to the (111)-Pt/Ni/PtNi3 surface compared to binding on the equivalently strained Pt(111) surfaces. Changes in the surface magnetisation of the surfaces overlaying the ferromagnetic alloys during adsorption are discussed, as well as the behaviour of the d-band centre across all surfaces, to evaluate the potential mechanisms for these differences in binding. An accompanying comparison of the accessible density functionals has been included to estimate the error in the computational binding energies.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 424
Author(s):  
Cuihua Zhao ◽  
Baishi Li ◽  
Xi Zhou ◽  
Jianhua Chen ◽  
Hongqun Tang

The electronic structures and optical properties of pure, Ag-doped and S-doped α-Fe2O3 were studied using density functional theory (DFT). The calculation results show that the structure of α-Fe2O3 crystal changes after Ag and S doping, which leads to the different points of the high symmetry of Ag-doped and S-doped α-Fe2O3 with that of pure α-Fe2O3 in the energy band, as well as different Brillouin paths. In addition, the band gap of α-Fe2O3 becomes smaller after Ag and S doping, and the optical absorption peak shifts slightly toward the short wavelength, with the increased peak strength of S/α-Fe2O3 and the decreased peak strength of Ag/α-Fe2O3. However, the optical absorption in the visible range is enhanced after Ag and S doping compared with that of pure α-Fe2O3 when the wavelength is greater than 380 nm, and the optical absorption of S-doped α-Fe2O3 is stronger than that of Ag-doped α-Fe2O3.


Sign in / Sign up

Export Citation Format

Share Document