scholarly journals Clausius-Mossotti approximation in the theory of sintered polar materials: A review

2009 ◽  
Vol 41 (3) ◽  
pp. 225-245 ◽  
Author(s):  
Y. Kornyushin

Clausius-Mossotti approximation is extended to describe the measured magnetic moment of an ellipsoidal sample containing magnetic or nonmagnetic ellipsoidal inclusions and magnetic or nonmagnetic matrix. The magnetic field in the matrix and inclusions is calculated. The magnetic energy of a system is calculated also. The equilibrium shape of a pore in a ferromagnetic sample is investigated. The phenomenon of a cavitation in porous ferromagnetic samples is described. The model is applied to calculate magnetic properties of granular superconductors. The effective electric conductivity of a sample, containing an arbitrary number of differently ordered distributions of ellipsoidal inclusions is calculated.

2020 ◽  
Vol 638 ◽  
pp. A28 ◽  
Author(s):  
Jan Jurčák ◽  
Markus Schmassmann ◽  
Matthias Rempel ◽  
Nazaret Bello González ◽  
Rolf Schlichenmaier

Context. Analyses of sunspot observations revealed a fundamental magnetic property of the umbral boundary: the invariance of the vertical component of the magnetic field. Aims. We analyse the magnetic properties of the umbra-penumbra boundary in simulated sunspots and thus assess their similarity to observed sunspots. We also aim to investigate the role of the plasma β and the ratio of kinetic to magnetic energy in simulated sunspots in the convective motions because these quantities cannot be reliably determined from observations. Methods. We used a set of non-gray simulation runs of sunspots with the MURaM code. The setups differed in terms of subsurface magnetic field structure and magnetic field boundary imposed at the top of the simulation domain. These data were used to synthesize the Stokes profiles, which were then degraded to the Hinode spectropolarimeter-like observations. Then, the data were treated like real Hinode observations of a sunspot, and magnetic properties at the umbral boundaries were determined. Results. Simulations with potential field extrapolation produce a realistic magnetic field configuration on the umbral boundaries of the sunspots. Two simulations with a potential field upper boundary, but different subsurface magnetic field structures, differ significantly in the extent of their penumbrae. Increasing the penumbra width by forcing more horizontal magnetic fields at the upper boundary results in magnetic properties that are not consistent with observations. This implies that the size of the penumbra is given by the subsurface structure of the magnetic field, that is, by the depth and inclination of the magnetopause, which is shaped by the expansion of the sunspot flux rope with height. None of the sunspot simulations is consistent with the observed properties of the magnetic field and the direction of the Evershed flow at the same time. Strong outward-directed Evershed flows are only found in setups with an artificially enhanced horizontal component of the magnetic field at the top boundary that are not consistent with the observed magnetic field properties at the umbra-penumbra boundary. We stress that the photospheric boundary of simulated sunspots is defined by a magnetic field strength of equipartition field value.


2021 ◽  
Vol 44 ◽  
pp. 92-95
Author(s):  
A.I. Podgorny ◽  
◽  
I.M. Podgorny ◽  
A.V. Borisenko ◽  
N.S. Meshalkina ◽  
...  

Primordial release of solar flare energy high in corona (at altitudes 1/40 - 1/20 of the solar radius) is explained by release of the magnetic energy of the current sheet. The observed manifestations of the flare are explained by the electrodynamical model of a solar flare proposed by I. M. Podgorny. To study the flare mechanism is necessary to perform MHD simulations above a real active region (AR). MHD simulation in the solar corona in the real scale of time can only be carried out thanks to parallel calculations using CUDA technology. Methods have been developed for stabilizing numerical instabilities that arise near the boundary of the computational domain. Methods are applicable for low viscosities in the main part of the domain, for which the flare energy is effectively accumulated near the singularities of the magnetic field. Singular lines of the magnetic field, near which the field can have a rather complex configuration, coincide or are located near the observed positions of the flare.


2017 ◽  
Vol 83 (4) ◽  
Author(s):  
Gregory G. Howes ◽  
Sofiane Bourouaine

Plasma turbulence occurs ubiquitously in space and astrophysical plasmas, mediating the nonlinear transfer of energy from large-scale electromagnetic fields and plasma flows to small scales at which the energy may be ultimately converted to plasma heat. But plasma turbulence also generically leads to a tangling of the magnetic field that threads through the plasma. The resulting wander of the magnetic field lines may significantly impact a number of important physical processes, including the propagation of cosmic rays and energetic particles, confinement in magnetic fusion devices and the fundamental processes of turbulence, magnetic reconnection and particle acceleration. The various potential impacts of magnetic field line wander are reviewed in detail, and a number of important theoretical considerations are identified that may influence the development and saturation of magnetic field line wander in astrophysical plasma turbulence. The results of nonlinear gyrokinetic simulations of kinetic Alfvén wave turbulence of sub-ion length scales are evaluated to understand the development and saturation of the turbulent magnetic energy spectrum and of the magnetic field line wander. It is found that turbulent space and astrophysical plasmas are generally expected to contain a stochastic magnetic field due to the tangling of the field by strong plasma turbulence. Future work will explore how the saturated magnetic field line wander varies as a function of the amplitude of the plasma turbulence and the ratio of the thermal to magnetic pressure, known as the plasma beta.


2018 ◽  
Vol 27 (02) ◽  
pp. 1850011
Author(s):  
Zeinab Rezaei

In this work, we calculate the neutron anomalous magnetic moment (AMM) supposing that this value can depend on the density and magnetic field of the system. We employ the lowest-order constraint variation (LOCV) method and [Formula: see text] nuclear potential to calculate the medium dependency of the neutron AMM. It is confirmed that the neutron AMM increases by increasing the density, while it decreases as the magnetic field grows. The energy and equation of state for the system have also been investigated.


1999 ◽  
Vol 32 (1-4) ◽  
pp. 289-294
Author(s):  
V. A. Lukshina ◽  
N. V. Dmitrieva ◽  
A. P. Potapov

For nanocrystalline alloy Fe73.5Cu1Nb3Si13.5B9 thermomechanical treatment was carried out simultaneously with nanocrystallizing annealing (1) or after it (2). It was shown that a change in magnetic properties for the case 1 is essentially greater than for the case 2. Complex effect of thermomagnetic and thermomechanical treatments on magnetic properties was studied in the above-mentioned nanocrystalline alloy as well as in the amorphous alloy Fe5Co70.6Si15B9.4., During the annealings both field and stress were aligned with the long side of the specimens. It was shown that the magnetic field, AC or DC, decreases an effect of loading. Moreover, the magnetic field, AC or DC, applied after stress-annealing can destroy the magnetic anisotropy already induced under load.


1984 ◽  
Vol 144 ◽  
pp. 1-11 ◽  
Author(s):  
Ya. B. Zel'Dovich ◽  
A. A. Ruzmaikin ◽  
S. A. Molchanov ◽  
D. D. Sokoloff

A magnetic field is shown to be asymptotically (t → ∞) decaying in a flow of finite conductivity with v = Cr, where C = Cζ(t) is a random matrix. The decay is exponential, and its rate does not depend on the conductivity. However, the magnetic energy increases exponentially owing to growth of the domain occupied by the field. The spatial distribution of the magnetic field is a set of thin ropes and (or) layers.


2017 ◽  
Vol 83 (1) ◽  
Author(s):  
Amnon Fruchtman

Penetration of a magnetic field into plasma that is faster than resistive diffusion can be induced by the Hall electric field in a non-uniform plasma. This mechanism explained successfully the measured velocity of the magnetic field penetration into pulsed plasmas. Major related issues have not yet been resolved. Such is the theoretically predicted, but so far not verified experimentally, high magnetic energy dissipation, as well as the correlation between the directions of the density gradient and of the field penetration.


1993 ◽  
Vol 157 ◽  
pp. 19-23
Author(s):  
J.H.G.M. van Geffen

The idea behind the use of ensemble averaging and the finite magnetic energy method of van Geffen and Hoyng (1992) is briefly discussed. Applying this method to the solar dynamo shows that the turbulence — an essential ingredient of traditional mean field dynamo theory — poses grave problems: the turbulence makes the magnetic field so unstable that it becomes impossible to recognize any period.


2007 ◽  
Vol 14 (4) ◽  
pp. 525-534 ◽  
Author(s):  
M. M. Echim ◽  
H. Lamy ◽  
T. Chang

Abstract. In this paper we investigate the statistical properties of magnetic field fluctuations measured by the four Cluster spacecraft in the cusp and close to the interface with the magnetospheric lobes, magnetopause and magnetosheath. At lower altitudes along the outbound orbit of 26 February 2001, the magnetic field fluctuations recorded by all four spacecraft are random and their Probability Distribution Functions (PDFs) are Gaussian at all scales. The flatness parameter, F – related to the kurtosis of the time series, is equal to 3. At higher altitudes, in the cusp and its vicinity, closer to the interface with the magnetopause and magnetosheath, the PDFs from all Cluster satellites are non-Gaussian and show a clear intermittent behavior at scales smaller than τG≈ 61 s (or 170 km). The flatness parameter increases to values greater than 3 for scales smaller than τG. A Haar wavelet transform enables the identification of the "events" that produce sudden variations of the magnetic field and of the scales that have most of the power. The LIM parameter (i.e. normalized wavelet power) indicates that events for scales below 65 s are non-uniformly distributed throughout the cusp passage. PDFs, flatness and wavelet analysis show that at coarse-grained scales larger than τG the intermittency is absent in the cusp. Fluctuations of the magnetic energy observed during the same orbit in the magnetosheath show PDFs that tend toward a Gaussian at scales smaller than τG found in the cusp. The flatness analysis confirms the decreasing of τG from cusp to magnetosheath. Our analysis reveals the turbulent cusp as a transition region from a non-intermittent turbulent state inside the magnetosphere to an intermittent turbulent state in the magnetosheath that has statistical properties resembling the solar wind turbulence. The observed turbulent fluctuations in the cusp suggests a phenomenon of nonlinear interactions of plasma coherent structures as in contemporary models of space plasma turbulence.


Author(s):  
Georgios Tsakyridis ◽  
Nikolaos I. Xiros ◽  
Michael M. Bernitsas

Magnetic levitation (maglev) concepts are applied to a variety of industries such as the automotive, aerospace, or energy in order to accomplish different tasks: suspension and propulsion in maglev trains, rocket propulsion and spacecraft attitude control, centrifuge of nuclear reactors. In this paper, maglev is implemented in environmentally friendly hydrokinetic energy harvesting to achieve contactless bearing, thus, minimizing friction and improving efficiency. Generally, maglev systems exhibit higher efficiency and reduced maintenance while providing longer lifetime and higher durability when appropriate engineering design and control are applied. A Flow Induced Oscillation (FIO) energy-harvesting converter is considered in this work. To minimize friction in the support of the cylinder in FIO (vortex induced vibrations and galloping) due to high hydrodynamic drag, a maglev system is proposed. In the proposed configuration, a ferromagnetic core (element 1), of known dimensions, is considered under the effects of an externally imposed magnetic field. A second ferromagnetic element, of smaller dimensions, is then placed adjacent to the previous considered core. This particular configuration results in a non-homogenous magnetic field for element 1, caused by dimensional disparity. Specifically, the magnetic flux does not follow a linear path from the ferromagnetic core to element 2. A general electromagnetic analysis is conducted to derive an analytical form for the magnetic field of element 1. Subsequent numerical simulation validates the obtained formula. This distinct expression for the magnetic field is valuable towards calculating the magnetic energy of this specific configuration, which is essential to the design of the FIO energy harvesting converter considered in this work.


Sign in / Sign up

Export Citation Format

Share Document