scholarly journals Modeling of the mechanical behavior of fiber-reinforced ceramic composites using finite element method (FEM)

2014 ◽  
Vol 46 (3) ◽  
pp. 385-390 ◽  
Author(s):  
M.M. Dimitrijevic ◽  
N. Tomic ◽  
B. Medjo ◽  
R. Jancic-Heinemann ◽  
M. Rakin ◽  
...  

Modeling of the mechanical behavior of fiber-reinforced ceramic matrix composites (CMC) is presented by the example of Al2O3 fibers in an alumina based matrix. The starting point of the modeling is a substructure (elementary cell) which includes on a micromechanical scale the statistical properties of the fiber, matrix and fiber-matrix interface and their interactions. The numerical evaluation of the model is accomplished by means of the finite element method. The numerical results of calculating the elastic modulus of the composite dependance on the quantity of the fibers added and porosity was compared to experimental values of specimens having the same composition.

2019 ◽  
Vol 13 (3) ◽  
pp. 173-179
Author(s):  
Majid Ahmadi ◽  
Seyed Hadi Seyedin ◽  
Seyed Vahid Seyedin

Ceramic materials are widely used in impact safekeeping systems. Ceramic is a heterogeneous material; its characteristics depend considerably both on specifications of its ingredients and the material structure completely. The finite element method (FEM) can be a useful tool for strength computation of these materials. In this paper, the mechanical properties of the ceramic composites are investigated, and the mechanical performance modeling of fiber-fortified ceramic matrix composites (CMC) is expressed by the instance of aluminum oxide fibers in a matrix composite based on alumina. The starting point of the modeling is an infrastructure (primary cell) that contains a micromechanical size, the statistical analysis characteristics of the matrix, fiber-matrix interface, fiber, and their reciprocal influences. The numeral assessment of the model is done using the FEM. The numerical results of composite elastic modulus were computed based on the amount of the added fibers and the porosity was evaluated for empirical data of samples with a similar composition. Various scanning electron microscope (SEM) images were used for each sample to specify the porosity. Also, the unit cell method presumed that the porous ceramic substance is manufactured from an array of fundamental units, each with the same composition, material characteristic, and cell geometry. The results showed that when the material consists of different pores and fibers, the amount of Young’s modulus reduces with the increment of porosity. The linear correlation model of elasticity versus porosity value from experimental data was derived by MATLAB curve fitting. The experimental data from the mechanical test and numerical values were in good agreement.


2017 ◽  
Vol 24 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Xiguang Gao ◽  
Piaoyang Luo ◽  
Guangwu Fang ◽  
Sheng Zhang ◽  
Yingdong Song

AbstractIn this study, a finite element method was developed based on X-ray computer tomography to predict the elastic modulus of needle carbon-fiber-reinforced ceramic matrix composites with voids randomly existing in the material. In these pictures, every pixel point contains all of the information of the components that we need, including voids. Using this information, the mechanical properties of components can be obtained, then a finite element model with voids was built and the predicted results fit well with the experiments. In addition, a volume average method was developed to determine the proper representative volume element size to reduce the computing time without losing the accuracy.


In this paper, SiCp /Al2O3 composites were fabricated through directed metal oxidation process. Experimental results of these composites validated or compared with Finite Element Method (FEM). Finite Element has become one in all the foremost necessary tools offered to an engineer. The finite part methodology is employed to resolve advanced analysis issues. In this paper, Finite Element Method based ANSYS software is used to FEM model to determine mechanical properties of SiC reinforced Al2O3 matrix composite by changing volume fractions of SiC. The comparison of experimental results with Finite element analysis provides detailed information about the results of these comparisons. The FA was competent of predict the information for several scenario quite fine


2011 ◽  
Vol 239-242 ◽  
pp. 2785-2789
Author(s):  
Chao Sun ◽  
Min Song ◽  
Ru Juan Shen ◽  
Yong Du

The effects of SiC fiber shape, aspect ratio and loading direction on the deformation behavior of SiC fiber reinforced Al matrix composites were studied by finite element method using axisymmetric unit cell model. The results showed that the addition of reinforcements will cause constraint on the plastic flow of ductile matrix, and thus result in no-uniform stress distribution. The reinforcement shape has a pronounced effect on the overall plastic deformation of the metal matrix composites. The loading condition will cause different failure mechanisms of composites. Under tensile loading, the stress-bearing ability in the plastic region is increased with the fiber aspect ratio due to the increase in the interface between the reinforcement and matrix and the decrease in the inter-particle space.


Sign in / Sign up

Export Citation Format

Share Document