scholarly journals Measurement of phase interaction in dispersed gas-particle two-phase flow by phase-doppler anemometry

2008 ◽  
Vol 12 (2) ◽  
pp. 59-68 ◽  
Author(s):  
Ali Mergheni ◽  
Ticha Ben ◽  
Jen-Charles Sautet ◽  
Gille Godard ◽  
Nasrallah Ben

For simultaneous measurement of size and velocity distributions of continuous and dispersed phases in a two-phase flow a technique phase-Doppler anemometry was used. Spherical glass particles with a particle diameter range from 102 up to 212 ?m were used. In this two-phase flow an experimental results are presented which indicate a significant influence of the solid particles on the flow characteristics. The height of influence of these effects depends on the local position in the jet. Near the nozzle exit high gas velocity gradients exist and therefore high turbulence production in the shear layer of the jet is observed. Here the turbulence intensity in the two-phase jet is decreased compared to the single-phase jet. In the developed zone the velocity gradient in the shear layer is lower and the turbulence intensity reduction is higher. .

Equipment ◽  
2006 ◽  
Author(s):  
Marijus Seporaitis ◽  
S. Gasiunas ◽  
Raimondas Pabarcius

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 951
Author(s):  
Yang Liu ◽  
Guohui Li

Gas turbulence modulations and particle dispersions of swirling gas–particle two-phase flow in the combustor is investigated under the large spans of the particle Stokes numbers. To fully consider the preferential concentrations and anisotropic dispersions of a particle, a kinetic frictional stress model coupled with a second-order moment two-phase turbulent model and granular temperature equation is improved. The proposed modeling and simulations are in good agreement with the experimental validations. Results show turbulent modulations and particle dispersions exhibit strongly anisotropic characteristics, keeping a close relationship with flow structure. The axial gas velocity and RMS fluctuation velocity of 45.0-μm EGP was approximately 5.0 times and 3.0 times greater than 1000.0 μm Copper particles, and their axial particle velocity was 0.25 times and twice greater than those of 45.0 μm EGP. The degree of modulation in the axial–radial direction is larger than those of radial–tangential and axial–tangential direction. Particle dispersions are sensitive to particle diameter parameters and intensified by higher Stokes number.


2021 ◽  
pp. 103813
Author(s):  
Dewei Wang ◽  
Shanbin Shi ◽  
Yucheng Fu ◽  
Kyle Song ◽  
Xiaodong Sun ◽  
...  

Data in Brief ◽  
2018 ◽  
Vol 16 ◽  
pp. 527-530 ◽  
Author(s):  
Abdalellah O. Mohmmed ◽  
Mohammad S. Nasif ◽  
Hussain H. Al-Kayiem

Author(s):  
Jorge Pinho ◽  
Patrick Rambaud ◽  
Saïd Chabane

The goal of this study is to understand the behavior of a safety relief valve in presence of a two-phase flow induced by cavitation, in which the mass flux tends to be reduced. Two distinct safety relief valves are tested: an API 2J3 type and a transparent model based on an API 1 1/2G3 type. Instead of using a spring, the design of both valves allows the adjustment of the disk at any desired lift. Tests are conducted with water at ambient temperature. Results show a similar influence of cavitation on the flow characteristics of both valves. The liquid pressure recovery factor FL, which is normally used to identify a choked flow condition in a control valve, is experimentally determined in a safety relief valve. The existence of a local minimum located at a height position L/D = 0.14 indicates in this position, a change on the flow characteristics of both valves. It is verified that the existence of a local minimum in the liquid recovery factor is related to the minimum cross section of the flow, which does not remain constant for every lift positions. Furthermore, it is remarked that in the case of the 2J3 safety valve, the blow down ring adjustment has significant influence on the location of the minimum cross sections of the flow.


Sign in / Sign up

Export Citation Format

Share Document