scholarly journals Series solutions for the flow in the vicinity of the equator of an MHD boundary-layer over a porous rotating sphere with heat transfer

2014 ◽  
Vol 18 (suppl.2) ◽  
pp. 527-537 ◽  
Author(s):  
Mohammad Rashidi ◽  
Navid Mehr

In this paper, an analytical method (DTM-Pad?) is employed to solve the flow and heat transfer near the equator of an MHD boundary-layer over a porous rotating sphere. This method is used to give solutions of nonlinear ordinary differential equations with boundary conditions at infinity. The velocity components in all directions (meridional, rotational and radial) and temperature fields are derived. The obtained results are verified with the results of numerical solution. A very good agreement can be observed between them. The effect of involved parameters such as magnetic strength parameter, rotation number, suction/blowing parameter and Prandtl number on the all-different types of velocity components, temperature field and surface shear stresses in meridional and rotational directions, infinite radial velocity and rate of heat transfer is checked and discussed.

2015 ◽  
Vol 19 (5) ◽  
pp. 1603-1612 ◽  
Author(s):  
Amir Malvandi

This paper deals with the unsteady boundary layer flow and heat transfer of nanofluid over a time-dependent rotating sphere where the free stream velocity varies continuously with time. The boundary layer equations were normalized via similarity variables and solved numerically. Best accuracy of the results has been obtained for regular fluid with previous studies. The nanofluid is treated as a two-component mixture (base fluid+nanoparticles) that incorporates the effects of Brownian diffusion and thermophoresis simultaneously as the two most important mechanisms of slip velocity in laminar flows. Our outcomes indicated that as A and ? increase, surface shear stresses, heat transfer and concentration rates, climb up. Also, Increasing the thermophoresis Nt is found to decrease in the both values of heat transfer and concentration rates. This decrease supresses for higher thermophoresis number. In addition, it was observed that unlike the heat transfer rate, a rise in Brownian motion Nb, leads to an increase in concentration rate.


2010 ◽  
Vol 132 (6) ◽  
Author(s):  
Mustafa Turkyilmazoglu

An unsteady flow and heat transfer of an incompressible electrically conducting fluid over a porous rotating infinite disk impulsively set into motion are studied in the present paper. The disk finds itself subjected to a uniform normal magnetic field. The particular interest lies in searching for the effects of an imposed uniform outer radial flow far above the disk on the behavior of the physical flow. The governing Navier–Stokes and Maxwell equations of the hydromagnetic fluid, together with the energy equation, are converted into self-similar forms using suitable similarity transformations. A compact, unconditionally stable, and highly accurate implicit spectral numerical integration algorithm is then employed in order to resolve the transient behavior of the velocity and temperature fields. The time evolution and steady state case of some parameters of fundamental physical significance such as the surface shear stresses in the radial and tangential directions and the heat transfer rate are also fully examined for the entire family of magnetic interaction, radial flow, and suction/blowing parameters.


Author(s):  
Rebecca Hollis ◽  
Jeffrey P. Bons

Two methods of flow control were designed to mitigate the effects of the horseshoe vortex structure (HV) at an airfoil/endwall junction. An experimental study was conducted to quantify the effects of localized boundary layer removal on surface heat transfer in a low-speed wind tunnel. A transient infrared technique was used to measure the convective heat transfer values along the surface surrounding the juncture. Particle image velocimetry was used to collect the time-mean velocity vectors of the flow field across three planes of interest. Boundary layer suction was applied through a thin slot cut into the leading edge of the airfoil at two locations. The first, referred to as Method 1, was directly along the endwall, the second, Method 2, was located at a height ∼1/3 of the approaching boundary layer height. Five suction rates were tested; 0%, 6.5%, 11%, 15% and 20% of the approaching boundary layer mass flow was removed at a constant rate. Both methods reduced the effects of the HV with increasing suction on the symmetry, 0.5-D and 1-D planes. Method 2 yielded a greater reduction in surface heat transfer but Method 1 outperformed Method 2 aerodynamically by completely removing the HV structure when 11% suction was applied. This method however produced other adverse effects such as high surface shear stress and localized areas of high heat transfer near the slot edges at high suction rates.


1990 ◽  
Vol 112 (1) ◽  
pp. 157-162 ◽  
Author(s):  
A. Nakayama ◽  
T. Kokudai ◽  
H. Koyama

The local similarity solution procedure was successfully adopted to investigate non-Darcian flow and heat transfer through a boundary layer developed over a horizontal flat plate in a highly porous medium. The full boundary layer equations, which consider the effects of convective inertia, solid boundary, and porous inertia in addition to the Darcy flow resistance, were solved using novel transformed variables deduced from a scale analysis. The results from this local similarity solution are found to be in good agreement with those obtained from a finite difference method. The effects of the convective inertia term, boundary viscous term, and porous inertia term on the velocity and temperature fields were examined in detail. Furthermore, useful asymptotic expressions for the local Nusselt number were derived in consideration of possible physical limiting conditions.


1976 ◽  
Vol 16 (74) ◽  
pp. 308-309
Author(s):  
S.S. Grigoryan ◽  
M.S. Krass ◽  
P.A. Shumskiy

Abstract In the case of a non-isothermal glacier it is necessary to integrate the equations of dynamics together with the equation of heat conduction, heat transfer, and heat generation because of the interdependence (1) of strain-rate of ice on its temperature, and (2) of ice temperature on the rate of heat transfer by moving ice and on the intensity of heat generation in its strain. In view of the complexity of the whole system of equations, simplified mathematical models have been constructed for dynamically different glaciers. The present model concerns land glaciers with thicknesses much less than their horizontal dimensions and radii of curvature of large bottom irregularities, so that the method of a thin boundary layer may be used. The principal assumption is the validity of averaging over a distance of the order of magnitude of ice thickness. Two component shear stresses parallel to the bottom in glaciers of this type considerably exceed the normal stresses and the third shear stress, so the dynamics are described by a statically determined system of equations. For the general case, expressions for the stresses have been obtained in dimensionless affine orthogonal curvilinear coordinates, parallel and normal to the glacier bottom, and taking into account the geometry of the lower and upper surfaces. The statically undetermined problem for ice divides is solved using the equations of continuity and rheology, so the result for stresses depends considerably on temperature distribution. In the case of a flat bottom the dynamics of an ice divide is determined by the curvature of the upper surface. The calculation of the interrelating velocity and temperature distributions is made by means of the iteration of solutions (1) for the components of velocity from the stress expressions using the rheological equations (a power law or the more precise hyberbolic one) with the assigned temperature distribution, and (2) for the temperature with the assigned velocity distribution. The temperature distribution in the coordinate system used is determined by a parabolic equation with a small parameter at the principal derivative. Its solution is reduced to the solution of a system of recurrent non-uniform differential equations of the first order by means of a series expansion of the small parameter: the right part for the largest term of the expansion contains a function of the heat sources, and for the other terms it contains the second derivative along the vertical coordinate from the previous expansion term. Thus advection makes the main contribution to the heat transfer, and temperature in a glacier is distributed along the particle paths, changing simultaneously under the influence of heat generation. A relatively thin conducting boundary layer adjoins the upper and lower surfaces of a glacier, playing the role of a temperature damper in the ablation area. The equation of heat conduction (at the free surface) or of heat conduction and heat transfer (at the bottom) with the boundary conditions, and with the condition of the connection with the solution of the problem for the internal temperature distribution, is being solved for the boundary layer because of its small thickness. Beyond the limits of the boundary layer, heat conduction makes a small change in the temperature distribution, which can be calculated with any degree of accuracy.


Sign in / Sign up

Export Citation Format

Share Document