scholarly journals Flow and heat transfer of three immiscible fluids in the presence of uniform magnetic field

2014 ◽  
Vol 18 (3) ◽  
pp. 1019-1028 ◽  
Author(s):  
Dragisa Nikodijevic ◽  
Zivojin Stamenkovic ◽  
Milos Jovanovic ◽  
Milos Kocic ◽  
Jelena Nikodijevic

The magnetohydrodynamic flow of three immiscible fluids in a horizontal channel with isothermal walls in the presence of an applied magnetic field has been investigated. All three fluids are electrically conducting, while the channel plates are electrically insulated. The general equations that describe the discussed problem under the adopted assumptions are reduced to ordinary differential equations and closed-form solutions are obtained in three fluid regions of the channel. Separate solutions with appropriate boundary conditions for each fluid have been obtained and these solutions have been matched at the interface using suitable boundary conditions. The analytical results for various values of the Hartmann number, the ratio of fluid heights and thermal conductivities have been presented graphically to show their effect on the flow and heat transfer characteristics.

2011 ◽  
Vol 2011 ◽  
pp. 1-18 ◽  
Author(s):  
Dragiša Nikodijević ◽  
Živojin Stamenković ◽  
Dragica Milenković ◽  
Bratislav Blagojević ◽  
Jelena Nikodijevic

The magnetohydrodynamic (MHD) Couette flow of two immiscible fluids in a horizontal channel with isothermal walls in the presence of an applied electric and inclined magnetic field has been investigated in the paper. Both fluids are electrically conducting, while the channel plates are electrically insulated. The general equations that describe the discussed problem under the adopted assumptions are reduced to ordinary differential equations, and closed-form solutions are obtained in both fluid regions of the channel. Separate solutions with appropriate boundary conditions for each fluid have been obtained, and these solutions have been matched at the interface using suitable matching conditions. The analytical results for various values of the Hartmann number, the angle of magnetic field inclination, loading parameter, and the ratio of fluid heights have been presented graphically to show their effect on the flow and heat transfer characteristics.


2010 ◽  
Vol 34 (3-4) ◽  
pp. 351-372 ◽  
Author(s):  
Stamenković M. Živojin ◽  
Dragiša D. Nikodijević ◽  
Bratislav D. Blagojević ◽  
Slobodan R. Savić

The magnetohydrodynamic (MHD) flow of two immiscible and electrically conducting fluids between isothermal, insulated moving plates in the presence of an applied electric and inclined magnetic field has been investigated in the paper. The partial differential equations governing the flow and heat transfer are solved analytically with appropriate boundary conditions for each fluid and these solutions have been matched at the interface. The numerical results for various values of the Hartmann number, the angle of magnetic field inclination, load parameter and the ratio of electrical and thermal conductivities have been presented graphically. It was found that decrease of magnetic field inclination angle flattens out the velocity and temperature profiles. With the increase of the Hartmann number velocity gradients near the plate’s increases, temperature in the middle of the channel decreases and near the plate’s increases. Induced magnetic field is evidently suppressed with an increase of the Hartman number. The effect of changes of the load factor is to aid or oppose the flow as compared to the short-circuited case.


2018 ◽  
Vol 22 (Suppl. 5) ◽  
pp. 1575-1589
Author(s):  
Zivojin Stamenkovic ◽  
Milos Kocic ◽  
Jelena Petrovic ◽  
Milica Nikodijevic

The MHD flow of three immiscible fluids in a horizontal channel with isothermal walls in the presence of an applied electric and inclined magnetic field has been investigated in the paper. All three fluids are electrically conducting, while the channel plates are electrically insulated. The general equations that describe the discussed problem under the adopted assumptions are reduced to ODE and closed-form solutions are obtained in three fluid regions of the channel. Separate solutions with appropriate boundary and interface conditions for each fluid have been determined. The analytical results for various values of the Hartmann number, magnetic field inclination angle, ratio of fluid viscosities, and electrical conductivities have been presented graphically to show their effect on the flow and heat transfer characteristics.


2016 ◽  
Vol 20 (suppl. 5) ◽  
pp. 1405-1417 ◽  
Author(s):  
Jelena Petrovic ◽  
Zivojin Stamenkovic ◽  
Milos Kocic ◽  
Milica Nikodijevic

The magnetohydordynamic flow and heat transfer of two viscous incompressible fluids through porous medium has been investigated in the paper. Fluids flow through porous medium between two parallel fixed isothermal plates in the presence of an inclined magnetic and perpendicular electric field. Fluids are electrically conducting, while the channel plates are insulated. The general equations that describe the discussed problem under the adopted assumptions are reduced to ordinary differential equations and closed-form solutions are obtained. Solutions with appropriate boundary conditions for velocity and temperature fields have been obtained. The analytical results for various values of the Hartmann number, load factor, viscosity and porosity parameter have been presented graphically to show their effect on the flow and heat transfer characteristics.


2010 ◽  
Vol 26 (4) ◽  
pp. 525-532 ◽  
Author(s):  
J. C. Umavathi ◽  
I-C. Liu ◽  
J. Prathap Kumar

ABSTRACTAn analysis of the Poiseuille-Couette flow of two immiscible fluids between inclined parallel plates is investigated. One of the fluids is assumed to be electrically conducting while the other fluid and channel walls are assumed to be electrically insulating. The viscous and Ohmic dissipation terms are taken into account in the energy equation. The coupled nonlinear equations are solved both analytically valid for small values of the product of Prandtl number and Eckert number (= ε) and numerically valid for all ε. Solutions for large ε reveal a marked change on the flow and rate of heat transfer. The effects of various parameters such as Hartmann number, Grashof number, angle of inclination, ratios of viscosities, widths and thermal conductivities are presented and discussed in detail.


2013 ◽  
Vol 18 (3) ◽  
pp. 699-726 ◽  
Author(s):  
T. Linga Raju ◽  
M. Nagavalli

Abstract The unsteady magnetohydrodynamic flow of two immiscible fluids in a horizontal channel bounded by two parallel porous isothermal plates in the presence of an applied magnetic and electric field is investigated. The flow is driven by a constant uniform pressure gradient in the channel bounded by two parallel insulating plates, one being stationary and the other oscillating, when both fluids are considered as electrically conducting. Also, both fluids are assumed to be incompressible with variable properties, viz. different viscosities, thermal and electrical conductivities. The transport properties of the two fluids are taken to be constant and the bounding plates are maintained at constant and equal temperatures. The governing equations are partial in nature, which are then reduced to the ordinary linear differential equations using two-term series. Closed form solutions for velocity and temperature distributions are obtained in both fluid regions of the channel. Profiles of these solutions are plotted to discuss the effect on the flow and heat transfer characteristics, and their dependence on the governing parameters involved, such as the Hartmann number, porous parameter, ratios of the viscosities, heights, electrical and thermal conductivities


2016 ◽  
Vol 20 (suppl. 5) ◽  
pp. 1391-1404
Author(s):  
Milos Kocic ◽  
Zivojin Stamenkovic ◽  
Jelena Petrovic ◽  
Jasmina Bogdanovic-Jovanovic ◽  
Milica Nikodijevic

In this paper, the steady flow and heat transfer of an incompressible electrically conducting micropolar fluid through a parallel plate channel is investigated. The upper and lower plates have been kept at the two constant different temperatures and the plates are electrically insulated. Applied magnetic field is perpendicular to the flow, while the Reynolds number is significantly lower than one i.e. considered problem is in induction-less approximation. The general equations that describe the discussed problem under the adopted assumptions are reduced to ordinary differential equations and three closed-form solutions are obtained. The velocity, micro-rotation and temperature fields in function of Hartmann number, the coupling parameter and the spin-gradient viscosity parameter are graphically shown and discussed.


2012 ◽  
Vol 16 (suppl. 2) ◽  
pp. 323-336 ◽  
Author(s):  
Zivojin Stamenkovic ◽  
Dragisa Nikodijevic ◽  
Milos Kocic ◽  
Jelena Nikodijevic

The paper investigates the magnetohydrodynamic flow of two immiscible, electrically conducting fluids between isothermal and insulated moving plates in the presence of an applied electric and inclined magnetic field with the effects of induced magnetic field. Partial differential equations governing the flow and heat transfer and magnetic field conservation are transformed to ordinary differential equations and solved exactly in both fluid regions, under physically appropriate boundary and interface conditions. Closed-form expressions are obtained for the non-dimensional velocity, non-dimensional induced magnetic field and nondimensional temperature. The analytical results for various values of the Hartmann number, the angle of magnetic field inclination, loading parameter and the ratio of plates? velocities are presented graphically to show their effect on the flow and heat transfer characteristics.


Sign in / Sign up

Export Citation Format

Share Document