scholarly journals An analytical solution for solving a new wave equation within Lorenzo-Hartley kernel

2019 ◽  
Vol 23 (6 Part B) ◽  
pp. 3739-3744
Author(s):  
Feng Gao

In this article we investigate the general fractional-order derivatives of the Riemann-Liouville type via Lorenzo-Hartley kernel, general fractional-order integrals and the new general fractional-order wave equation defined on the definite domain with the analytical soluton.

2019 ◽  
Vol 23 (Suppl. 3) ◽  
pp. 989-995
Author(s):  
Zhanguo Ma ◽  
Minchao Zhang ◽  
Shixing Cheng ◽  
Jun Hu ◽  
Yang Su ◽  
...  

In this paper, we consider the general fractional-order derivatives of the Liouville-Sonine-Caputo and Liouville-Sonine type containing the Lorenzo-Hartley kernel. A general fractional-order model for the wave equation with the analytical solution is discussed in detail. The general fractional-order formula is accurate and efficient for description of the complex, power-law and memory behaviors for the mining rock.


2019 ◽  
Vol 23 (Suppl. 3) ◽  
pp. 983-987
Author(s):  
Anye Cao ◽  
Xiao-Jun Yang ◽  
Yiying Feng

In this paper, we consider the general fractional-order derivatives of the Liouville-Sonine-Caputo and Liouville-Sonine type containing the Lorenzo-Hartley kernel. A general fractional-order model for the wave equation with the analytical solution is discussed in detail. The general fractional-order formula is accurate and efficient for description of the complex, power-law and memory behaviors for the mining rock.


Geophysics ◽  
2021 ◽  
pp. 1-74
Author(s):  
Xinru Mu ◽  
Jianping Huang ◽  
Lei Wen ◽  
Subin Zhuang

We propose a new time-domain viscoacoustic wave equation for simulating wave propagation in anelastic media. The new wave equation is derived by inserting the complex-valued phase velocity described by the Kjartansson attenuation model into the frequency-wavenumber domain acoustic wave equation. Our wave equation includes one second-order temporal derivative and two spatial variable-order fractional Laplacian operators. The two fractional Laplacian operators describe the phase dispersion and amplitude attenuation effects, respectively. To facilitate the numerical solution for the proposed wave equation, we use the arbitrary-order Taylor series expansion (TSE) to approximate the mixed domain fractional Laplacians and achieve the decoupling of the wavenumber and the fractional order. Then the proposed viscoacoustic wave equation can be directly solved using the pseudospectral method (PSM). We adopt a hybrid pseudospectral/finite-difference method (HPSFDM) to stably simulate wave propagation in arbitrarily complex media. We validate the high accuracy of the proposed approximate dispersion term and approximate dissipation term in comparison with the accurate dispersion term and accurate dissipation term. The accuracy of numerical solutions is evaluated by comparison with the analytical solutions in homogeneous media. Theory analysis and simulation results show that our viscoacoustic wave equation has higher precision than the traditional fractional viscoacoustic wave equation in describing constant- Q attenuation. For a model with Q < 10, the calculation cost for solving the new wave equation with TSE HPSFDM is lower than that for solving the traditional fractional-order wave equation with TSE HPSFDM under the high numerical simulation precision. Furthermore, we demonstrate the accuracy of HPSFDM in heterogeneous media by several numerical examples.


Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. T39-T48 ◽  
Author(s):  
Ning Wang ◽  
Hui Zhou ◽  
Hanming Chen ◽  
Muming Xia ◽  
Shucheng Wang ◽  
...  

Efficient modeling schemes currently exist to handle the spatially variable-order fractional Laplacians in the fractional Laplacian viscoacoustic wave equation. The simplest approach is to change the spatially variable-order fractional Laplacians into a linear combination of several constant fractional-order Laplacians. We generalize the constant fractional-order scheme to a spatially variable fractional-order viscoelastic wave equation and develop an almost-equivalent constant fractional-order viscoelastic wave equation. Our constant fractional-order scheme avoids the simulation error introduced by directly averaging the spatially varying fractional order; thus, our scheme simulates seismic wave propagation in viscoelastic media with sharp [Formula: see text] contrasts well. The fast Fourier transform is used in the approximation of the fractional Laplacians, which improves the spectral accuracy in space. Several simulation examples are performed to verify that the numerical solution of a homogeneous [Formula: see text] model obtained by solving our constant fractional-order viscoelastic wave equation agrees well with that obtained by solving the original viscoelastic wave equation. The numerical simulations for spatially varying [Formula: see text] models obtained by the new wave equation are more straightforward than those currently in use and match the reference solutions obtained by accurate, but inefficient, methods. This match of simulation results verifies the accuracy of our viscoelastic wave equation.


Author(s):  
Onur Alp İlhan ◽  
Hasan Bulut ◽  
Tukur Abdulkadir Sulaiman ◽  
Haci Mehmet Baskonus

The analytical solution of the longitudinal wave equation in the MEE circular rod is analyzed by the powerful sine-Gordon expansion method. Sine - Gordon expansion is based on the well-known wave transformation and sine - Gordon equation. In the longitudinal wave equation in mathematical physics, the transverse Poisson MEE circular rod is caused by the dispersion. Some solutions with complex, hyperbolic and trigonometric functions have been successfully implemented. Numerical simulations of all solutions are given by selecting the appropriate parameter values. The physical meaning of the analytical solution explaining some practical physical problems is given.


2016 ◽  
pp. 3973-3982
Author(s):  
V. R. Lakshmi Gorty

The fractional integrals of Bessel-type Fractional Integrals from left-sided and right-sided integrals of fractional order is established on finite and infinite interval of the real-line, half axis and real axis. The Bessel-type fractional derivatives are also established. The properties of Fractional derivatives and integrals are studied. The fractional derivatives of Bessel-type of fractional order on finite of the real-line are studied by graphical representation. Results are direct output of the computer algebra system coded from MATLAB R2011b.


Geophysics ◽  
1997 ◽  
Vol 62 (1) ◽  
pp. 309-318 ◽  
Author(s):  
Jorge O. Parra

The transversely isotropic poroelastic wave equation can be formulated to include the Biot and the squirt‐flow mechanisms to yield a new analytical solution in terms of the elements of the squirt‐flow tensor. The new model gives estimates of the vertical and the horizontal permeabilities, as well as other measurable rock and fluid properties. In particular, the model estimates phase velocity and attenuation of waves traveling at different angles of incidence with respect to the principal axis of anisotropy. The attenuation and dispersion of the fast quasi P‐wave and the quasi SV‐wave are related to the vertical and the horizontal permeabilities. Modeling suggests that the attenuation of both the quasi P‐wave and quasi SV‐wave depend on the direction of permeability. For frequencies from 500 to 4500 Hz, the quasi P‐wave attenuation will be of maximum permeability. To test the theory, interwell seismic waveforms, well logs, and hydraulic conductivity measurements (recorded in the fluvial Gypsy sandstone reservoir, Oklahoma) provide the material and fluid property parameters. For example, the analysis of petrophysical data suggests that the vertical permeability (1 md) is affected by the presence of mudstone and siltstone bodies, which are barriers to vertical fluid movement, and the horizontal permeability (1640 md) is controlled by cross‐bedded and planar‐laminated sandstones. The theoretical dispersion curves based on measurable rock and fluid properties, and the phase velocity curve obtained from seismic signatures, give the ingredients to evaluate the model. Theoretical predictions show the influence of the permeability anisotropy on the dispersion of seismic waves. These dispersion values derived from interwell seismic signatures are consistent with the theoretical model and with the direction of propagation of the seismic waves that travel parallel to the maximum permeability. This analysis with the new analytical solution is the first step toward a quantitative evaluation of the preferential directions of fluid flow in reservoir formation containing hydrocarbons. The results of the present work may lead to the development of algorithms to extract the permeability anisotropy from attenuation and dispersion data (derived from sonic logs and crosswell seismics) to map the fluid flow distribution in a reservoir.


Sign in / Sign up

Export Citation Format

Share Document