fractured sandstone
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 26)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
Zhao Bin ◽  
Zhu Guangyou ◽  
Shang Yanjun ◽  
Shao Peng

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Haopeng Jiang ◽  
Annan Jiang

To explore the seepage characteristics of cut-through fractured rocks after different temperatures, sandstone in the Hunan area was selected as the research object. First, the influence degree of different temperatures on the permeability of fractured sandstone was studied, and the permeability variation of fractured sandstone with net confining pressure was revealed. The test data was nonlinearly fitted to prove that the relationship between permeability and net confining pressure conforms to the characteristics of the negative exponential function. Second, the macroscopic fractured state of sandstone after different temperature treatments was analyzed, and it is concluded that the inclination angle of the fracture surface decreases with the applied thermal temperature, the fracture surface gradually develops into a single shear failure surface, and the damage degree becomes more and more serious. Finally, the theoretical formula for the calculation of fractured seepage was introduced, and the FLAC3D embedded fish language was used to compile the seepage-stress coupling calculation program of the fractured sandstone after different temperature treatments. Numerical calculations were carried out based on samples with different fracture angles of fractured sandstone, and the calculated values were in good agreement with the test results. The research results can provide guiding significance for the research on the influence of high temperature in fire tunnel on the evolution of permeability of surrounding rock fissures.


Author(s):  
Carlos H. Maldaner ◽  
Jonathan D. Munn ◽  
Bradley A. Green ◽  
Samuel L. Warner ◽  
Steven W. Chapman ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Tao Zhao ◽  
Gengshe Yang ◽  
Lei Wang ◽  
Hailiang Jia ◽  
Yuzhe Qiao

Fractured sandstone is widely distributed in mining areas throughout western China where the artificial freezing method is extensively adopted to construct vertical shafts. Blasting and excavation generate stress waves and break frozen fractured sandstone. Among the failure modes of frozen fractured rocks, tensile failure is very common. In this study, the dynamic tensile strength of fractured sandstone samples with four crack inclination angles (0°, 30°, 60°, and 90°) is tested by using a split Hopkinson pressure bar at four subzero temperatures (−5, −10, −15, and −20°C). Accordingly, a damage constitutive relationship that considers the effect of fissure angle and freezing temperature is established. The results show the following: (1) the fissure angle does not significantly affect the dynamic tensile strength of frozen fractured sandstone but mainly affects the failure mode of the sample. (2) The dynamic tensile strength of fractured sandstone has a negative linear correlation with the freezing temperature. (3) When the fissure angle is small, only tensile cracking occurs; when the fissure angle is large, tensile cracking occurs along both the loading direction and the fissure; and shear cracking occurs along the fissure as well. (4) Regardless of the fissure angle, tensile cracking is initiated at the stress-concentration zone and then propagates towards the loading end. Fissure ice provides both resistance to deformation and resistance to crack propagation which affects the crack propagation and coalescence mode. A dynamic constitutive relationship is established by considering the effects of fissure angle and freezing temperature on the dynamic properties of frozen fractured sandstone, which is proven to be highly reliable and provides a reference and basis to study the dynamic mechanical properties of similar rock types.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hongcai Shi

To investigate the influence of pore pressure ( σ w ) on the creep behavior and permeability of red sandstone, triaxial creep test with permeability test under different pore pressures was conducted using MTS 815 testing system. The experimental results demonstrate that water has significant weakening effect on the long-term mechanical properties of sandstone, and the long-term strength of sandstone gradually decreases with increase in pore pressures. All permeability-time curves demonstrate a “decreasing-increasing” trend, but two different permeability evolution trends during the steady creep stage are observed, which are related to deviatoric stress. The permeability of both intact ( k 0 ) and fractured sandstone ( k f ) samples increases with the increase in pore pressure, which are in consistent with the failure mode analysis of fractured sandstone samples. However, while the relationship between k 0 and σ w is positive linear, it is a positive exponential function relationship between k f and σ w .


Geophysics ◽  
2021 ◽  
pp. 1-102
Author(s):  
Ren-Shi Nie ◽  
Zheng Wang ◽  
Zhangxin Chen ◽  
An-Cheng Wang ◽  
Chang-Hong Zhou ◽  
...  

Stress-sensitive permeability (SSP) influences gas well productivity and is a crucial element influencing gas reservoir development. SSP for high-pressure fractured gas reservoirs with an initial reservoir pressure of more than 20 MPa has never been comprehensively evaluated to the best of our knowledge. SSP experiments with special procedures were designed by adopting the variable confining pressure (VCP) and variable internal pressure (VIP) methods. VCP is a test method in which confining pressure is altered and a constant internal pressure is maintained for the experimental core holder. VIP is a test method in which internal pressure is changed and a constant confining pressure is maintained. A four-stage curve analysis method was developed to perform regressions on semi-logarithmic curves and exponential curves of experimental data. A method to evaluate the SSP was presented using stress sensitivity coefficients obtained via regressions. A calculation approach for determining the degrees of permeability damage and permeability recovery was also proposed. Six matrix cores and six cores with artificial fractures from a high-pressure fractured sandstone gas reservoir were tested using the two methods. The SSP curves for high-pressure reservoirs were characterized by four-stage variation trends, which differentiated with low-pressure reservoirs with an initial reservoir pressure less than 20 MPa. The stress sensitivity of the VCP method was stronger than that of the VIP method. The core samples mainly showed a “Medium” / “Medium-Strong” stress sensitivity under low/high effective stress conditions. Compared with matrix cores, fractured cores showed stronger stress sensitivity owing to its strong plasticity and weak elasticity. The maximum permeability damage degree reached 99.67% and the minimum permeability recovery was only 6.9%. The presented method of experimental design, four-stage curve analysis, stress sensitivity evaluation and the summarized findings in this paper can provide references for future studies on SSP in high-pressure fractured sandstone gas reservoirs.


Sign in / Sign up

Export Citation Format

Share Document