scholarly journals Entanglement and geometric phase of the coherent field interacting with a three two-level atoms in the presence of non-linear terms

2020 ◽  
Vol 24 (Suppl. 1) ◽  
pp. 237-245
Author(s):  
Eman Hilal ◽  
Sadah Alkhateeb ◽  
Sayed Abel-Khalek ◽  
Eied Khalil ◽  
Amjaad Almowalled

We study the interaction of a three two-level atoms with a one-mode optical coherent field in coherent state in the presence of non-linear Kerr medim. The three atoms are initially prepared in upper and entangled states while the field mode is in a coherent state. The constants of motion, three two-level atoms and field density matrix are obtained. The analytic results are employed to perform some investigations of the temporal evolution of the von Neumann entropy as measure of the degree of entanglement between the three two-level atoms and optical coherent field. The effect of the detuning and the initial atomic states on the evolution of geometric phase and entanglement is analyzed. Also, we demonstrate the link between the geometric phase and non-classical properties during the evolution time. Additionally the effect of detuning and initial conditions on the Mandel parameter is studied. The obtained results are emphasize the impact of the detuning and the initial atomic states of the feature of the entanglement, geometric phase and photon statistics of the optical coherent field.

2020 ◽  
Vol 24 (Suppl. 1) ◽  
pp. 237-245
Author(s):  
Eman Hilal ◽  
Sadah Alkhateeb ◽  
Sayed Abel-Khalek ◽  
Eied Khalil ◽  
Amjaad Almowalled

We study the interaction of a three two-level atoms with a one-mode optical coherent field in coherent state in the presence of non-linear Kerr medim. The three atoms are initially prepared in upper and entangled states while the field mode is in a coherent state. The constants of motion, three two-level atoms and field density matrix are obtained. The analytic results are employed to perform some investigations of the temporal evolution of the von Neumann entropy as measure of the degree of entanglement between the three two-level atoms and optical coherent field. The effect of the detuning and the initial atomic states on the evolution of geometric phase and entanglement is analyzed. Also, we demonstrate the link between the geometric phase and non-classical properties during the evolution time. Additionally the effect of detuning and initial conditions on the Mandel parameter is studied. The obtained results are emphasize the impact of the detuning and the initial atomic states of the feature of the entanglement, geometric phase and photon statistics of the optical coherent field.


2020 ◽  
Vol 24 (Suppl. 1) ◽  
pp. 39-48
Author(s):  
Eman Hilal ◽  
Sadah Alkhateeb ◽  
Sayed Abdel-Khalek ◽  
Eied Khalil ◽  
Amjaad Almowalled

We study the interaction of a three two-level atoms (3-2LA) with a one-mode op?tical coherent field in coherent state in the presence of non-linear Kerr medium. The three atoms are initially prepared in upper and entangled states while the field mode is in a coherent state. The constants of motion, 3-2LA and field density matrix are obtained. The analytic results are employed to perform some investigations of the temporal evolution of the von Neumann entropy as measure of the degree of entanglement between the 3-2LA and optical coherent field. The effect of the detuning and the initial atomic states on the evolution of geometric phase and en?tanglement is analyzed. Also, we demonstrate the link between the geometric phase and non-classical properties during the evolution time. Additionally the effect of detuning and initial conditions on the Mandel parameter is studied. The obtained results are emphasize the impact of the detuning and the initial atomic states of the feature of the entanglement, geometric phase and photon statistics of theoptical coherent field.


2020 ◽  
Vol 24 (Suppl. 1) ◽  
pp. 39-48
Author(s):  
Eman Hilal ◽  
Sadah Alkhateeb ◽  
Sayed Abdel-Khalek ◽  
Eied Khalil ◽  
Amjaad Almowalled

We study the interaction of a three two-level atoms (3-2LA) with a one-mode op?tical coherent field in coherent state in the presence of non-linear Kerr medium. The three atoms are initially prepared in upper and entangled states while the field mode is in a coherent state. The constants of motion, 3-2LA and field density matrix are obtained. The analytic results are employed to perform some investigations of the temporal evolution of the von Neumann entropy as measure of the degree of entanglement between the 3-2LA and optical coherent field. The effect of the detuning and the initial atomic states on the evolution of geometric phase and en?tanglement is analyzed. Also, we demonstrate the link between the geometric phase and non-classical properties during the evolution time. Additionally the effect of detuning and initial conditions on the Mandel parameter is studied. The obtained results are emphasize the impact of the detuning and the initial atomic states of the feature of the entanglement, geometric phase and photon statistics of theoptical coherent field.


2015 ◽  
Vol 22 (03) ◽  
pp. 1550015 ◽  
Author(s):  
S. Abdel-Khalek

An important kind of interaction between two moving two-level atoms and a field mode, where the coupling parameter is taken to be time-dependent, is presented in this paper. Nonlocal correlations between the atoms and the field have been investigated by means of concurrence and von Neumann entropy in terms of the involved parameters of the system. The results show that the atomic motion plays an essential role in the evolution of system dynamics, its nonlocal correlations and geometric phase. Moreover, an interesting correlation between the entanglement and the geometric phase during the evolution was observed. The presented system can be very useful for generating and maintaining high amount of entanglement by means of controlling the parameters of atomic motion.


2016 ◽  
Vol 456 (4) ◽  
pp. 4247-4255 ◽  
Author(s):  
Steffen Heß ◽  
Francisco-Shu Kitaura

Abstract In this work, we investigate the impact of cosmic flows and density perturbations on Hubble constant H0 measurements using non-linear phase–space reconstructions of the Local Universe (LU). In particular, we rely on a set of 25 precise constrained N-body simulations based on Bayesian initial conditions reconstructions of the LU using the Two-Micron Redshift Survey galaxy sample within distances of about 90  h−1 Mpc. These have been randomly extended up to volumes enclosing distances of 360  h−1 Mpc with augmented Lagrangian perturbation theory (750 simulations in total), accounting in this way for gravitational mode coupling from larger scales, correcting for periodic boundary effects, and estimating systematics of missing attractors (σlarge = 134  s−1 km). We report on Local Group (LG) speed reconstructions, which for the first time are compatible with those derived from cosmic microwave background-dipole measurements: |vLG| = 685 ± 137  s−1 km. The direction (l, b) = (260$_{.}^{\circ}$5 ± 13$_{.}^{\circ}$3, 39$_{.}^{\circ}$1 ± 10$_{.}^{\circ}$4) is found to be compatible with the observations after considering the variance of large scales. Considering this effect of large scales, our local bulk flow estimations assuming a Λ cold dark matter model are compatible with the most recent estimates based on velocity data derived from the Tully–Fisher relation. We focus on low-redshift supernova measurements out to 0.01 < z < 0.025, which have been found to disagree with probes at larger distances. Our analysis indicates that there are two effects related to cosmic variance contributing to this tension. The first one is caused by the anisotropic distribution of supernovae, which aligns with the velocity dipole and hence induces a systematic boost in H0. The second one is due to the inhomogeneous matter fluctuations in the LU. In particular, a divergent region surrounding the Virgo Supercluster is responsible for an additional positive bias in H0. Taking these effects into account yields a correction of ΔH0 = -1.76 ± 0.21  s− 1 km Mpc− 1, thereby reducing the tension between local probes and more distant probes. Effectively H0 is lower by about 2 per cent.


2019 ◽  
Vol 34 (10) ◽  
pp. 1950081 ◽  
Author(s):  
N. H. Abdel-Wahab ◽  
Ahmed Salah

In this paper, we study the interaction between the time-dependent field and a two-level atom with one mode electromagnetic field. We consider that the field of photons is assumed to be coupled with modulated coupling parameter which depends explicitly on time. It is shown that the considered model can be reduced to a well-known form of the time-dependent generalized Jaynes–Cummings model. Under special initial conditions, in which the atom and the field are prepared in the excited and the coherent states, respectively, the explicit time evolution of the wave function of the entire system is analytically obtained. Our proposal has many advantages over the previous optical schemes and can be realized in several multiple experiments, such as trapped ions and quantum electrodynamics cavity. The influence of the time-dependent field parameter on the collapses-revivals, the normal squeezing of the radiation, the anti-bunching of photons and the entanglement phenomena for the considered atomic system is examined. The linear entropy, the von Neumann entropy are used to quantify entanglement in the quantum systems. We noticed that these phenomena are affected by the existence of both the time-dependent coupling field and detuning parameters.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1465
Author(s):  
Petre Caraiani ◽  
Alexandru Vasile Lazarec

We analyze the changes in the financial network built using the Dow Jones Industrial Average components following monetary policy shocks. Monetary policy shocks are measured through unexpected changes in the federal funds rate in the United States. We determine the changes in the financial networks using singular value decomposition entropy and von Neumann entropy. The results indicate that unexpected positive shocks in monetary policy shocks lead to lower entropy. The results are robust to varying the window size used to construct financial networks, though they also depend on the type of entropy used.


2019 ◽  
Vol 1 (1) ◽  
pp. 23-36
Author(s):  
S. Jamal Anwar ◽  
M. Ramzan ◽  
M. Usman ◽  
M. Khalid Khan

We investigated numerically the dynamics of quantum Fisher information (QFI) and entanglement for three- and four-level atomic systems interacting with a coherent field under the effect of Stark shift and Kerr medium. It was observed that the Stark shift and Kerr-like medium play a prominent role during the time evolution of the quantum systems. The non-linear Kerr medium has a stronger effect on the dynamics of QFI as compared to the quantum entanglement (QE). QFI is heavily suppressed by increasing the value of Kerr parameter. This behavior was found comparable in the cases of three- and four-level atomic systems coupled with a non-linear Kerr medium. However, QFI and quantum entanglement (QE) maintain their periodic nature under atomic motion. On the other hand, the local maximum value of QFI and von Neumann entropy (VNE) decrease gradually under the Stark effect. Moreover, no prominent difference in the behavior of QFI and QE was observed for three- and four-level atoms while increasing the value of Stark parameter. However, three- and four-level atomic systems were found equally prone to the non-linear Kerr medium and Stark effect. Furthermore, three- and four-level atomic systems were found fully prone to the Kerr-like medium and Stark effect.


2006 ◽  
Vol 20 (11n13) ◽  
pp. 1613-1620 ◽  
Author(s):  
F. CASAGRANDE ◽  
A. LULLI

We describe the entanglement of a Jaynes-Cummings system, where a two-level atom is also strongly driven by an external coherent field while it crosses a resonant cavity prepared in a coherent state. First we consider the atom-cavity field entanglement, described by the Von Neumann entropy. We find that it depends only on the interaction time and the initial atomic state. The entropy vanishes in the case of maximally polarized atom, independent of the interaction time, whereas it reaches its maximum value for atom in the upper or lower state and for long enough interaction times. Then we investigate the entanglement between two consecutive strongly driven atoms interacting with the cavity mode assumed in the vacuum state, showing that they never entangle in spite of the existence of atom-atom correlations.


2020 ◽  
Vol 35 (28) ◽  
pp. 2050235
Author(s):  
Bahaaudin M. Raffah ◽  
E. M. Khalil ◽  
S. Abdel-Khalek ◽  
K. Berrada ◽  
Yas Al-Hadeethi ◽  
...  

The laser field interacting with single trapped ion in a carrier excitation frame in the presence of an external field is investigated. Detailed analytical expressions are given, taking into account carrier excitation configurations. We study the evolution of the population inversion, fidelity, ion-field entanglement, Fisher information and the geometric phase. The results indicate the influence of the external field on the information quantities to describe some physical phenomena. The relation between the population inversion, fidelity, von Neumann entropy, Fisher information, and geometric phase are explored during the time evolution.


Sign in / Sign up

Export Citation Format

Share Document