scholarly journals Clinical significance of diagnostic algorithm in detection of mild hemostasis disorders in women with menorrhagia

2020 ◽  
Vol 77 (6) ◽  
pp. 601-606
Author(s):  
Svetlana Djukic ◽  
Nebojsa Andjelkovic ◽  
Vladimir Vukomanovic ◽  
Ivana Simic-Vukomanovic ◽  
Aleksandar Djukic ◽  
...  

Background/Aim. Coagulation disorders could be a cause of menorrhagia in women of reproductive age. The aim of the study was to estimate frequency of coagulation disorders and design an appropriate algorithm for detection of coagulation disorders. Methods. We investigated coagulation in 115 women (36.1 ? 9.6 years) with anamnestic data of menorrhagia, verified using semiquantitative method ? Pictorial Bleeding Assessment Chart (PBAC) with score ? 100. Results. Menorrhagia was objectively verified in sixty-four women (55.7%) and in comparison with those with normal menstruation they had higher PBAC score of menstrual cycle [median (Md) = 150.0 vs. Md = 50.0; p < 0.001] but not its duration (7.2 ? 2.1 days vs. 7.3 ? 1.9 days; p > 0.05). Coagulation defects was found in 12 (10.4%) women ? decreased F IX: Ac in 4 (3.5%), decreased F VII: Ac in 1 (0.9%), decreased F X: Ac in 1 (0.9%), decreased F XI: Ac in 1 woman (0.9%), while 5 (4.3%) women matched criteria for mild von Willebrand disease (VWD) type 1. Women with coagulation disorders had prolonged prothrombin time (PT) [Md = 13.1 s, range: 12.2?14.8 s vs. Md = 12.5 s, range 10.6?18.3 s; p = 0.032]. Anemia was diagnosed in 61 (53.0%) women. The strongest predictor of the hemostasis disorder was menorrhagia (Quotient of probability 0.018), then anemia presence (12.43), P? (2.35), menstrual cycle duration (1.16) and the PBAC score (0.98). Conclusion. The results of the study indicate the need to form a diagnostic algorithm for hemostasis disorders, primarily VWD. Sophisticated analysis of hemostasis is required, especially if predictive factors of statistical models are detected: objectively verified menorrhagia, anemia, prolonged menstrual cycle, PBAC score > 100 and extended PT.

2019 ◽  
Vol 46 (04) ◽  
pp. 484-500 ◽  
Author(s):  
Jana Zolkova ◽  
Juraj Sokol ◽  
Tomas Simurda ◽  
Lubica Vadelova ◽  
Zuzana Snahnicanova ◽  
...  

AbstractSequencing of the gene encoding for von Willebrand factor (VWF) has brought new insight into the physiology of VWF as well as its pathophysiology in the context of von Willebrand disease (VWD). Molecular testing in VWD patients has shown high variability in the overall genetic background of this condition. Almost 600 mutations and many disease-causing mechanisms have been described in the 35 years since the VWF gene was identified. Genetic testing in VWD patients is now available in many centers as a part of the VWD diagnostic algorithm. Molecular mechanisms leading to types 2 and 3 VWD are well characterized; thus, information from genetic analysis in these VWD types may be beneficial for their correct classification. However, the molecular basis of type 1 VWD is still not fully elucidated and most likely represents a multifactorial disorder reflecting a combined impact of environmental and genetic factors within and outside of VWF. Regarding sequencing methods, the previous gold-standard Sanger sequencing is gradually being replaced with next-generation sequencing methods that are more cost- and time-effective. Instead of gene-by-gene approaches, gene panels of genes for coagulation factors and related proteins have recently become a center of attention in patients with inherited bleeding disorders, especially because a high proportion of VWD patients, mainly those with low VWF plasma levels (type 1), appear to be free of mutations in VWF. Whole-exome sequencing (WES) and whole-genome sequencing (WGS) are accessible in a very limited number of laboratories. Results from these studies have presented several genes other than VWF or ABO possibly affecting VWF levels, and such findings will need further validation studies.


Hematology ◽  
2019 ◽  
Vol 2019 (1) ◽  
pp. 596-600
Author(s):  
Ruchika Sharma ◽  
Sandra L. Haberichter

Abstract von Willebrand disease (VWD) is the most common autosomal inherited bleeding disorder, with an estimated prevalence of 1 in 1000 individuals. VWD is classified into quantitative and qualitative forms. Diagnosis of VWD is complex and requires (1) a personal history of bleeding symptoms, (2) family history of bleeding or VWD, and (3) confirmatory laboratory testing. There are certain bleeding assessment tools to objectively measure bleeding symptoms in patients that have been shown to correlate with the diagnosis as well as the severity of VWD. Laboratory diagnosis requires at least initially a measurement of von Willebrand factor (VWF) antigen levels, VWF platelet binding activity (VWF:RCo, VWF:GPIbM, and VWF:GPIbR), and factor VIII (FVIII) activity. Additional testing to confirm the specific subtype may include VWF collagen binding activity, low-dose ristocetin VWF-platelet binding, FVIII-VWF binding, VWF multimer analysis, and VWF propeptide antigen. Recent advances have been made regarding some of these assays. Molecular testing in VWD is not found to be useful in “low VWF” or most type 1 VWD cases but may be informative in patients with severe type 1 VWD, type 1C VWD, type 2 VWD, or type 3 VWD for accurate diagnosis, genetic counseling, and appropriate treatment. The diagnostic algorithm for VWD is complex, but advances continue to be made in improving VWF functional assays and diagnostic pathways.


Blood ◽  
2013 ◽  
Vol 122 (23) ◽  
pp. 3735-3740 ◽  
Author(s):  
David Lillicrap

Abstract von Willebrand disease (VWD) is the most common autosomally inherited bleeding disorder. The disease represents a range of quantitative and qualitative pathologies of the adhesive glycoprotein von Willebrand factor (VWF). The pathogenic mechanisms responsible for the type 2 qualitative variants of VWF are now well characterized, with most mutations representing missense substitutions influencing VWF multimer structure and interactions with platelet GPIbα and collagen and with factor VIII. The molecular pathology of type 3 VWD has been similarly well characterized, with an array of different mutation types producing either a null phenotype or the production of VWF that is not secreted. In contrast, the pathogenetic mechanisms responsible for type 1 VWD remain only partially resolved. In the hemostasis laboratory, the measurement of VWF:Ag and VWF:RCo are key components in the diagnostic algorithm for VWD, although the introduction of direct GPIbα-binding assays may become the functional assay of choice. Molecular genetic testing can provide additional benefit, but its utility is currently limited to type 2 and 3 VWD. The treatment of bleeding in VWD involves the use of desmopressin and plasma-derived VWF concentrates and a variety of adjunctive agents. Finally, a new recombinant VWF concentrate has just completed clinical trial evaluation and has demonstrated excellent hemostatic efficacy and safety.


Hematology ◽  
2013 ◽  
Vol 2013 (1) ◽  
pp. 254-260 ◽  
Author(s):  
David Lillicrap

Abstract von Willebrand disease (VWD) is the most common autosomally inherited bleeding disorder. The disease represents a range of quantitative and qualitative pathologies of the adhesive glycoprotein von Willebrand factor (VWF). The pathogenic mechanisms responsible for the type 2 qualitative variants of VWF are now well characterized, with most mutations representing missense substitutions influencing VWF multimer structure and interactions with platelet GPIbα and collagen and with factor VIII. The molecular pathology of type 3 VWD has been similarly well characterized, with an array of different mutation types producing either a null phenotype or the production of VWF that is not secreted. In contrast, the pathogenetic mechanisms responsible for type 1 VWD remain only partially resolved. In the hemostasis laboratory, the measurement of VWF:Ag and VWF:RCo are key components in the diagnostic algorithm for VWD, although the introduction of direct GPIbα-binding assays may become the functional assay of choice. Molecular genetic testing can provide additional benefit, but its utility is currently limited to type 2 and 3 VWD. The treatment of bleeding in VWD involves the use of desmopressin and plasma-derived VWF concentrates and a variety of adjunctive agents. Finally, a new recombinant VWF concentrate has just completed clinical trial evaluation and has demonstrated excellent hemostatic efficacy and safety.


1996 ◽  
Vol 75 (06) ◽  
pp. 959-964 ◽  
Author(s):  
I M Nesbitt ◽  
A C Goodeve ◽  
A M Guilliatt ◽  
M Makris ◽  
F E Preston ◽  
...  

Summaryvon Willebrand factor (vWF) is a multimeric glycoprotein found in plasma non covalently linked to factor VIII (FVIII). Type 2N von Willebrand disease (vWD) is caused by a mutation in the vWF gene that results in vWF with a normal multimeric pattern, but with reduced binding to FVIII.We have utilised methods for the phenotypic and genotypic detection of type 2N vWD. The binding of FVIII to vWF in 69 patients, 36 with type 1 vWD, 32 with mild haemophilia A and one possible haemophilia A carrier with low FVIII levels was studied. Of these, six were found to have reduced binding (five type 1 vWD, one possible haemophilia A carrier), DNA was extracted from these patients and exons 18-23 of the vWF gene encoding the FVIII binding region of vWF were analysed. After direct sequencing and chemical cleavage mismatch detection, a Thr28Met mutation was detected in two unrelated individuals, one of whom appears to be a compound heterozygote for the mutation and a null allele. No mutations were found in the region of the vWF gene encoding the FVIII binding region of vWF in the other four patients


2021 ◽  
Vol 47 (02) ◽  
pp. 192-200
Author(s):  
James S. O'Donnell

AbstractThe biological mechanisms involved in the pathogenesis of type 2 and type 3 von Willebrand disease (VWD) have been studied extensively. In contrast, although accounting for the majority of VWD cases, the pathobiology underlying partial quantitative VWD has remained somewhat elusive. However, important insights have been attained following several recent cohort studies that have investigated mechanisms in patients with type 1 VWD and low von Willebrand factor (VWF), respectively. These studies have demonstrated that reduced plasma VWF levels may result from either (1) decreased VWF biosynthesis and/or secretion in endothelial cells and (2) pathological increased VWF clearance. In addition, it has become clear that some patients with only mild to moderate reductions in plasma VWF levels in the 30 to 50 IU/dL range may have significant bleeding phenotypes. Importantly in these low VWF patients, bleeding risk fails to correlate with plasma VWF levels and inheritance is typically independent of the VWF gene. Although plasma VWF levels may increase to > 50 IU/dL with progressive aging or pregnancy in these subjects, emerging data suggest that this apparent normalization in VWF levels does not necessarily equate to a complete correction in bleeding phenotype in patients with partial quantitative VWD. In this review, these recent advances in our understanding of quantitative VWD pathogenesis are discussed. Furthermore, the translational implications of these emerging findings are considered, particularly with respect to designing personalized treatment plans for VWD patients undergoing elective procedures.


2009 ◽  
Vol 121 (2-3) ◽  
pp. 119-127 ◽  
Author(s):  
Jan Jacques Michiels ◽  
Alain Gadisseur ◽  
Inge Vangenegten ◽  
Wilfried Schroyens ◽  
Zwi Berneman

Sign in / Sign up

Export Citation Format

Share Document