scholarly journals Gene expression of chemokines CX3CL1 and CXCL16 and their receptors, CX3CR1 and CXCR6, in peripheral blood mononuclear cells of patients with relapsing-remitting multiple sclerosis - a pilot study

2020 ◽  
Vol 77 (9) ◽  
pp. 967-973
Author(s):  
Ljiljana Stojkovic ◽  
Aleksandra Stankovic ◽  
Ivan Zivotic ◽  
Evica Dincic ◽  
Dragan Alavantic ◽  
...  

Background/Aim. In vitro and in vivo studies show that CX3CL1 and CXCL16 chemokines and their specific receptors, CX3CR1 and CXCR6, respectively, mediate mechanism of neuroinflammation during the pathogenesis of multiple sclerosis (MS). The aim of this study was to investigate relative messenger ribonucleic acid (mRNA) levels of CX3CL1, CXCL16, CX3CR1 and CXCR6 in peripheral blood mononuclear cells, as potential molecular markers of relapsing-remitting (RR) MS. Methods. The study included 43 unrelated RR MS patients, 20 of them with clinically active disease (relapse) and 23 with clinically stable disease (remission), and 28 unrelated healthy subjects as controls. Real-time polymerase chain reactions (PCR) were performed using TaqMan? gene expression assays. Relative expression (mRNA) level of each target gene in each sample of peripheral blood mononuclear cells was calculated as the mean normalized expression. Results. The levels of CX3CR1 mRNA were significantly higher in clinically active RR MS patients compared to controls [fold change = 1.38, p (Mann-Whitney U test) = 0.009], and significantly lower in clinically stable vs active RR MS patients [fold change = - 1.43, p (t-test) = 0.03]. Stable RR MS patients had significantly higher CXCL16 mRNA levels than controls [fold change = 1.33, p (Mann-Whitney U test) = 0.006]. A trend of increased CXCR6 gene expression was found in active RR MS patients compared to controls [fold change = 1.23, p (Mann-Whitney U test) = 0.08]. In either active or stable RR MS patients there were no significant correlations of the clinical parameters with expression levels of the target genes. Conclusion. The current results show that increased CX3CR1 mRNA levels in peripheral blood mononuclear cells could represent a proinflammatory molecular marker of clinically active RR MS.

2010 ◽  
Vol 16 (3) ◽  
pp. 366-369 ◽  
Author(s):  
R. Reuβ ◽  
V. Schreiber ◽  
A. Klein ◽  
C. Infante-Duarte ◽  
M. Filippi ◽  
...  

We investigated the expression of intercellular adhesion molecules ICAM-1 and ICAM-3 on peripheral blood mononuclear cells in a subgroup of 34 patients with relapsing-remitting multiple sclerosis who were treated orally with the chemokine receptor 1 antagonist BX 471 in a 16-week, randomised, double-blind, placebo-controlled phase II study. ICAM-1 and ICAM-3 expression was measured by flow cytometry at different time points during and after therapy and compared using multivariate analysis of variance and non-parametric Mann Whitney test. ICAM-3 expression on CD14 + peripheral blood mononuclear cells was increased in the verum group under therapy, but did not differ significantly between the verum and placebo groups. Most likely, this trend represents a small epiphenomenon only mediated by receptor cross-talk and feedback mechanisms.


2001 ◽  
Vol 170 (2) ◽  
pp. R7-11 ◽  
Author(s):  
SJ Yankey ◽  
BA Hicks ◽  
KG Carnahan ◽  
AM Assiri ◽  
SJ Sinor ◽  
...  

Interferon-tau (IFN tau) acts locally on the endometrium to suppress estrogen and oxytocin receptor expression and block luteolysis in ruminants. Systemic administration of conceptus homogenates or recombinant ovine IFN tau does not block luteolysis or enhance pregnancy rates in sheep or cattle, respectively. However, IFN tau up-regulates expression of the antiviral protein Mx throughout the entire uterine wall during early pregnancy. These studies determined if conceptus-derived IFN tau also up-regulates Mx expression in components of the circulating immune system that migrate through the endometrial wall. In experiment one, peripheral blood mononuclear cells (PBMC) were isolated from ewes at D26 post-artificial insemination (AI) and Mx mRNA levels examined by Northern and slot-blot hybridization. Pregnancy resulted in a two-fold increase in Mx mRNA levels compared to bred, non-pregnant ewes at D26. In experiment two, PBMC were isolated from ewes at AI, and every three days from D9 to D30. Results showed a four-fold increase in Mx mRNA levels in PBMC from pregnant versus bred, non-pregnant ewes at D15. Increased Mx mRNA, which remained elevated through D30, was accompanied by increased levels of Mx protein. These results show that pregnancy recognition signaling rapidly induces Mx gene expression in PBMC, and are the first to suggest that IFN tau activates gene expression in components of the circulating immune system.


Author(s):  
Freshteh Alsahebfosoul ◽  
◽  
Boshra Afshar ◽  
Mazdak Ganjalikhani-Hakemi ◽  
Zahra Khalifezadeh Esfahani ◽  
...  

Background: Multiple sclerosis has been considered as chronic inflammation of the central nervous system (CNS) and autoimmune disease .MS is most widely considered to be mediated by activation of myelin-specific T CD4+ cells as well as TH1 and TH17 cells. TH17 cell has been involved in the pathogenesis of MS in various ways. HIF-1α and RORC are required for natural differentiation of TH17 and are essential transcription factors for the evolution of TH17 cells. Numerous studies indicate that epigallocatechin gallate (EGCG) has immunomodulatory and anti-inflammatory effects. Aims: This study investigated the effect of EGCG on normoxic HIF-1α and RORC2 expression in PBMCs of MS patients. Methods: Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood of new cases MS patients. The cells cultured in the presence of a different concentration of EGCG (25, 50,100μM) for 18 and 48 hours. Afterward, HIF-1α and RORC2 level expressions were measured by enzyme-linked immunosorbent assay (ELISA) and Real-Time PCR, respectively. Result: The results showed that EGCG significantly decrease RORC2 gene expression. However, EGCG did not influence the level of HIF-1α. Our present data has led us to conclude that EGCG could be considered as an anti-inflammatory agent may serving as an achievable therapeutic agent for MS.


2002 ◽  
Vol 70 (10) ◽  
pp. 5494-5502 ◽  
Author(s):  
Paul M. Coussens ◽  
Christopher J. Colvin ◽  
Kacie Wiersma ◽  
Amy Abouzied ◽  
Sue Sipkovsky

ABSTRACT A bovine-specific cDNA microarray system containing 721 unique leukocyte expressed sequence tags (ESTs) and amplicons representing known genes was used to compare gene expression profiles of peripheral blood mononuclear cells (PBMCs) from clinical and subclinical Johne's disease-positive Holstein cows (n = 2 per group). Stimulation of PBMCs from clinically infected cows with Mycobacterium paratuberculosis tended to decrease expression of 83 genes (fold change, >1.5). Of these 83 genes, 16 displayed significant down regulation across both clinical cows (P < 0.1), including genes encoding microspherule protein 1, fibroblast growth factor, and the Lyn B protein kinase. Only eight genes from PBMCs of clinically infected cows exhibited a modest up regulation following stimulation with M. paratuberculosis, including those encoding bovine CD40L, gamma interferon, interleukin-10 (IL-10), and tissue inhibitor of matrix metalloproteinases (TIMP) 4. In contrast, stimulation of PBMCs from subclinically infected cows with M. paratuberculosis tended to up regulate expression of 71 genes representing 68 unique transcripts. Of these, 11 genes showed significant up regulation (fold change, >1.5; P < 0.1) across both animals, including those encoding bovine CD40L, several matrix metalloproteinases, and SPARC (secreted protein, acidic and rich in cystine). Repression of gene expression was also observed in PBMCs from the subclinical cows, with 16 genes being significantly down regulated (fold change, >1.5; P < 0.1) across both animals, including those encoding the bovine orthologs of cytochrome oxidase subunit III, IL-1 receptor type I, and fibrinogen-like 2 protein. Only one clone, representing an unknown bovine EST, was similarly down regulated in PBMCs from both the clinical and subclinical cows. Thus, the most prominent change induced by exposure of PBMCs from clinical cows to M. paratuberculosis in vitro tended to be repression of gene expression, while changes in similarly treated PBMCs from subclinical cows was balanced between gene activation and repression. Comparison of gene expression profiles between PBMCs from clinical and uninfected (control) cows stimulated with the general mitogen concanavalin A were highly similar (overall r = 0.84), suggesting that M. paratuberculosis-induced gene repression in clinically infected cow PBMCs was not due to a general failure of the immune response in these animals.


Sign in / Sign up

Export Citation Format

Share Document