Wet Heavy Metals Heavy Metals in Natural Waters: Applied Monitoring and Impact Assessment James W. Moore S. Ramamoorthy

BioScience ◽  
1985 ◽  
Vol 35 (1) ◽  
pp. 54-54
Author(s):  
Harry V. Leland
2014 ◽  
Vol 9 (4) ◽  
pp. 441-444
Author(s):  
Y. A. Dzhenis ◽  
I. I. Tuber

Soil is a powerful and active absorber of many substances, assumes the pressure of industrial and municipal emissions and waste, and performs the important role of a buffer and a detoxicant. It accumulates heavy metals, pesticides, hydrocarbons and other chemical polluting substances and due to the soil absorbing complex (SAC) strongly captures and protects natural waters and the atmosphere from harm. Applying sewage sludges in our research will enable us to strengthen the capacity of SAC and to reduce the toxicity of heavy metals when they enter a reservoir via a drain from anthropogenically polluted territory.


Author(s):  

The paper presents a new methodology for establishing regional water quality standards for the Upper Kama water bodies. Water bodies of the Upper Kama Basin are receiving wastewater from one of the largest industrial complexes of the Kama basin – Solikamsk-Berezniki industrial hub. The approach takes into account factors that determine the content of heavy metals in natural waters and the spatial/temporal variability of their content in the water bodies of the Upper Kama basin. The developed approach is implemented in establishment of regional water quality standards for the Upper Kama basin.


2020 ◽  
Vol 24 (3) ◽  
pp. 19-23 ◽  
Author(s):  
A.S. Kutergin ◽  
T.A. Nedobukh

The possibilities of using natural granular glauconite in standard water treatment schemes have been investigated. Resource tests of the studied material were carried out in dynamics, simulating possible conditions of use. As a result of the experiments, it was established: during the filtration process, alkalization of water occurs, but the result does not exceed pH = 6÷9, which are the norm for drinking water; the use of a sorbent based on natural glauconite does not impair the hardness indicator of the treated water. The dynamic exchange capacity was: for iron – 3.09 mg/g of absorbent, copper – 19.15 mg/g of absorbent, zinc – 4.82 mg/g of absorbent. The resource of the filter was determined with the loading of granulate with a volume of 1 dm3: for iron – 2918 dm3, for copper – 5425 dm3, for zinc – 273 dm3. The mechanical strength acquired by the sorbent as a result of granulation made it possible to wash the load by the countercurrent method, freeing intergranular pores from the sediment accumulated in them. The revealed capabilities of granular glauconite will allow its use in drinking water treatment schemes for purifying natural waters from heavy metals: iron, zinc, copper.


Sign in / Sign up

Export Citation Format

Share Document