Random filters which preserve the stability of random inputs

1988 ◽  
Vol 20 (2) ◽  
pp. 275-294 ◽  
Author(s):  
Stamatis Cambanis

A stationary stable random processes goes through an independently distributed random linear filter. It is shown that when the input is Gaussian or harmonizable stable, then the output is also stable provided the filter&s transfer function has non-random gain. In contrast, when the input is a non-Gaussian stable moving average, then the output is stable provided the filter&s randomness is due only to a random global sign and time shift.

1988 ◽  
Vol 20 (02) ◽  
pp. 275-294
Author(s):  
Stamatis Cambanis

A stationary stable random processes goes through an independently distributed random linear filter. It is shown that when the input is Gaussian or harmonizable stable, then the output is also stable provided the filter&s transfer function has non-random gain. In contrast, when the input is a non-Gaussian stable moving average, then the output is stable provided the filter&s randomness is due only to a random global sign and time shift.


1980 ◽  
Vol 17 (01) ◽  
pp. 265-270 ◽  
Author(s):  
M. Rosenblatt

A linear process is generated by applying a linear filter to independent, identically distributed random variables. Only the modulus of the frequency response function can be estimated if only the linear process is observed and if the independent identically distributed random variables are Gaussian. In this case a number of distinct but related problems coalesce and the usual discussion of these problems assumes, for example, in the case of a moving average that the zeros of the polynomial given by the filter have modulus greater than one. However, if the independent identically distributed random variables are non-Gaussian, these problems become distinct and one can estimate the transfer function under appropriate conditions except for a possible linear phase shift by using higher-order spectral estimates.


1972 ◽  
Vol 14 (7) ◽  
pp. 207-210
Author(s):  
A. Sh. Afremoff ◽  
E. P. Nikolaev

This paper is concerned with the non-linear characteristics of an auto-pilot in improving the stability of ships in following seas. The theory is developed for optimizing the auto-pilot, accounting for the non-linearities introduced by limitations on rudder angle and rudder angular velocity. The yaw and rudder angles are assumed to be stationary random processes, and the Wiener–Hopf integral is used to obtain the transfer function relating them in a system of waves, hence yielding the optimum rudder behaviour. For given auto-pilot characteristics, it is shown how root-mean-square yaw angles may be estimated for a ship in a given course in a known sea state.


1980 ◽  
Vol 17 (1) ◽  
pp. 265-270 ◽  
Author(s):  
M. Rosenblatt

A linear process is generated by applying a linear filter to independent, identically distributed random variables. Only the modulus of the frequency response function can be estimated if only the linear process is observed and if the independent identically distributed random variables are Gaussian. In this case a number of distinct but related problems coalesce and the usual discussion of these problems assumes, for example, in the case of a moving average that the zeros of the polynomial given by the filter have modulus greater than one. However, if the independent identically distributed random variables are non-Gaussian, these problems become distinct and one can estimate the transfer function under appropriate conditions except for a possible linear phase shift by using higher-order spectral estimates.


2012 ◽  
Vol 37 (4) ◽  
pp. 447-454
Author(s):  
James W. Beauchamp

Abstract Source/filter models have frequently been used to model sound production of the vocal apparatus and musical instruments. Beginning in 1968, in an effort to measure the transfer function (i.e., transmission response or filter characteristic) of a trombone while being played by expert musicians, sound pressure signals from the mouthpiece and the trombone bell output were recorded in an anechoic room and then subjected to harmonic spectrum analysis. Output/input ratios of the signals’ harmonic amplitudes plotted vs. harmonic frequency then became points on the trombone’s transfer function. The first such recordings were made on analog 1/4 inch stereo magnetic tape. In 2000 digital recordings of trombone mouthpiece and anechoic output signals were made that provide a more accurate measurement of the trombone filter characteristic. Results show that the filter is a high-pass type with a cutoff frequency around 1000 Hz. Whereas the characteristic below cutoff is quite stable, above cutoff it is extremely variable, depending on level. In addition, measurements made using a swept-sine-wave system in 1972 verified the high-pass behavior, but they also showed a series of resonances whose minima correspond to the harmonic frequencies which occur under performance conditions. For frequencies below cutoff the two types of measurements corresponded well, but above cutoff there was a considerable difference. The general effect is that output harmonics above cutoff are greater than would be expected from linear filter theory, and this effect becomes stronger as input pressure increases. In the 1990s and early 2000s this nonlinear effect was verified by theory and measurements which showed that nonlinear propagation takes place in the trombone, causing a wave steepening effect at high amplitudes, thus increasing the relative strengths of the upper harmonics.


Author(s):  
V. M. Artyushenko ◽  
V. I. Volovach

The questions connected with mathematical modeling of transformation of non-Gaussian random processes, signals and noise in linear and nonlinear systems are considered and analyzed. The mathematical transformation of random processes in linear inertial systems consisting of both series and parallel connected links, as well as positive and negative feedback is analyzed. The mathematical transformation of random processes with polygamous density of probability distribution during their passage through such systems is considered. Nonlinear inertial and non-linear systems are analyzed.


2018 ◽  
Vol 15 (1) ◽  
pp. 84-93
Author(s):  
V. I. Volovach ◽  
V. M. Artyushenko

Reviewed and analyzed the issues linked with the torque and naguszewski cumulant description of random processes. It is shown that if non-Gaussian random processes are given by both instantaneous and cumulative functions, it is assumed that such processes are fully specified. Spectral characteristics of non-Gaussian random processes are considered. It is shown that higher spectral densities exist only for non-Gaussian random processes.


2021 ◽  
Vol 11 (4) ◽  
pp. 1829
Author(s):  
Davide Grande ◽  
Catherine A. Harris ◽  
Giles Thomas ◽  
Enrico Anderlini

Recurrent Neural Networks (RNNs) are increasingly being used for model identification, forecasting and control. When identifying physical models with unknown mathematical knowledge of the system, Nonlinear AutoRegressive models with eXogenous inputs (NARX) or Nonlinear AutoRegressive Moving-Average models with eXogenous inputs (NARMAX) methods are typically used. In the context of data-driven control, machine learning algorithms are proven to have comparable performances to advanced control techniques, but lack the properties of the traditional stability theory. This paper illustrates a method to prove a posteriori the stability of a generic neural network, showing its application to the state-of-the-art RNN architecture. The presented method relies on identifying the poles associated with the network designed starting from the input/output data. Providing a framework to guarantee the stability of any neural network architecture combined with the generalisability properties and applicability to different fields can significantly broaden their use in dynamic systems modelling and control.


1988 ◽  
Vol 25 (02) ◽  
pp. 313-321 ◽  
Author(s):  
ED McKenzie

Analysis of time-series models has, in the past, concentrated mainly on second-order properties, i.e. the covariance structure. Recent interest in non-Gaussian and non-linear processes has necessitated exploration of more general properties, even for standard models. We demonstrate that the powerful Markov property which greatly simplifies the distributional structure of finite autoregressions has an analogue in the (non-Markovian) finite moving-average processes. In fact, all the joint distributions of samples of a qth-order moving average may be constructed from only the (q + 1)th-order distribution. The usefulness of this result is illustrated by references to three areas of application: time-reversibility; asymptotic behaviour; and sums and associated point and count processes. Generalizations of the result are also considered.


Sign in / Sign up

Export Citation Format

Share Document