Carbon Dioxide Flux from Three Arctic Tundra Types in North-Central Alaska, U.S.A.

1982 ◽  
Vol 14 (1) ◽  
pp. 27 ◽  
Author(s):  
D. K. Poole ◽  
P. C. Miller
Geomorphology ◽  
1998 ◽  
Vol 21 (3-4) ◽  
pp. 313-327 ◽  
Author(s):  
Douglas Stow ◽  
Allen Hope ◽  
William Boynton ◽  
Stuart Phinn ◽  
Donald Walker ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Katrin Attermeyer ◽  
Joan Pere Casas-Ruiz ◽  
Thomas Fuss ◽  
Ada Pastor ◽  
Sophie Cauvy-Fraunié ◽  
...  

AbstractGlobally, inland waters emit over 2 Pg of carbon per year as carbon dioxide, of which the majority originates from streams and rivers. Despite the global significance of fluvial carbon dioxide emissions, little is known about their diel dynamics. Here we present a large-scale assessment of day- and night-time carbon dioxide fluxes at the water-air interface across 34 European streams. We directly measured fluxes four times between October 2016 and July 2017 using drifting chambers. Median fluxes are 1.4 and 2.1 mmol m−2 h−1 at midday and midnight, respectively, with night fluxes exceeding those during the day by 39%. We attribute diel carbon dioxide flux variability mainly to changes in the water partial pressure of carbon dioxide. However, no consistent drivers could be identified across sites. Our findings highlight widespread day-night changes in fluvial carbon dioxide fluxes and suggest that the time of day greatly influences measured carbon dioxide fluxes across European streams.


2009 ◽  
Vol 9 (6) ◽  
pp. 2089-2095 ◽  
Author(s):  
Ü. Rannik ◽  
I. Mammarella ◽  
P. Keronen ◽  
T. Vesala

Abstract. Night-time ozone deposition for a Scots pine forest in Southern Finland was studied at the SMEAR II measurement station by evaluating the turbulent eddy covariance (EC), storage change and vertical advection fluxes. Similarly to night-time carbon dioxide flux, the eddy-covariance flux of ozone was decreasing with turbulence intensity (friction velocity), and storage change of the compound did not compensate the reduction (well-known night-time measurement problem). Accounting for vertical advection resulted in invariance of ozone deposition rate on turbulence intensity. This was also demonstrated for carbon dioxide, verified by independent measurements of NEE by chamber systems. The result highlights the importance of advection when considering the exchange measurements of any scalar. Analysis of aerodynamic and laminar boundary layer resistances by the model approach indicated that the surface resistance and/or chemical sink strength was limiting ozone deposition. The possible aerial ozone sink by known fast chemical reactions with sesquiterpenes and NO explain only a minor fraction of ozone sink. Thus the deposition is controlled either by stomatal uptake or surface reactions or both of them, the mechanisms not affected by turbulence intensity. Therefore invariance of deposition flux on turbulence intensity is expected also from resistance and chemical sink analysis.


Oecologia ◽  
1982 ◽  
Vol 53 (1) ◽  
pp. 7-11 ◽  
Author(s):  
W. D. Billings ◽  
J. O. Luken ◽  
D. A. Mortensen ◽  
K. M. Peterson

2019 ◽  
Author(s):  
Martin Kunz ◽  
Jost V. Lavric ◽  
Rainer Gasche ◽  
Christoph Gerbig ◽  
Richard H. Grant ◽  
...  

Abstract. The carbon exchange between ecosystems and the atmosphere has a large influence on the Earth system and specifically on the climate. This exchange is therefore being studied intensively, often using the eddy covariance (EC) technique. EC measurements provide reliable results under turbulent atmospheric conditions, but under stable conditions – as they often occur at night – these measurements are known to misrepresent exchange fluxes. Nocturnal boundary layer (NBL) budgets can provide independent flux estimates under stable conditions, but their application so far has been limited by rather high cost and practical difficulties. Unmanned aircraft systems (UASs) equipped with trace gas analysers have the potential to make this method more accessible. We present the methodology and results of a proof of concept study carried out during the ScaleX 2016 campaign. Successive vertical profiles of carbon dioxide dry air mole fraction in the NBL were taken with a compact analyser carried by a UAS. We estimate an average carbon dioxide flux of 12 μmol m−2 s−1, which is plausible for nocturnal respiration in this region in summer. Transport modelling suggests that the NBL budgets represent an area on the order of 100 km2.


2020 ◽  
Vol 17 (15) ◽  
pp. 4025-4042
Author(s):  
Dean Howard ◽  
Yannick Agnan ◽  
Detlev Helmig ◽  
Yu Yang ◽  
Daniel Obrist

Abstract. Understanding the processes that influence and control carbon cycling in Arctic tundra ecosystems is essential for making accurate predictions about what role these ecosystems will play in potential future climate change scenarios. Particularly, air–surface fluxes of methane and carbon dioxide are of interest as recent observations suggest that the vast stores of soil carbon found in the Arctic tundra are becoming more available to release to the atmosphere in the form of these greenhouse gases. Further, harsh wintertime conditions and complex logistics have limited the number of year-round and cold-season studies and hence too our understanding of carbon cycle processes during these periods. We present here a two-year micrometeorological data set of methane and carbon dioxide fluxes, along with supporting soil pore gas profiles, that provide near-continuous data throughout the active summer and cold winter seasons. Net emission of methane and carbon dioxide in one of the study years totalled 3.7 and 89 g C m−2 a−1 respectively, with cold-season methane emission representing 54 % of the annual total. In the other year, net emission totals of methane and carbon dioxide were 4.9 and 485 g C m−2 a−1 respectively, with cold-season methane emission here representing 82 % of the annual total – a larger proportion than has been previously reported in the Arctic tundra. Regression tree analysis suggests that, due to relatively warmer air temperatures and deeper snow depths, deeper soil horizons – where most microbial methanogenic activity takes place – remained warm enough to maintain efficient methane production whilst surface soil temperatures were simultaneously cold enough to limit microbial methanotrophic activity. These results provide valuable insight into how a changing Arctic climate may impact methane emission, and highlight a need to focus on soil temperatures throughout the entire active soil profile, rather than rely on air temperature as a proxy for modelling temperature–methane flux dynamics.


Sign in / Sign up

Export Citation Format

Share Document