scholarly journals Environmental controls on ecosystem-scale cold-season methane and carbon dioxide fluxes in an Arctic tundra ecosystem

2020 ◽  
Vol 17 (15) ◽  
pp. 4025-4042
Author(s):  
Dean Howard ◽  
Yannick Agnan ◽  
Detlev Helmig ◽  
Yu Yang ◽  
Daniel Obrist

Abstract. Understanding the processes that influence and control carbon cycling in Arctic tundra ecosystems is essential for making accurate predictions about what role these ecosystems will play in potential future climate change scenarios. Particularly, air–surface fluxes of methane and carbon dioxide are of interest as recent observations suggest that the vast stores of soil carbon found in the Arctic tundra are becoming more available to release to the atmosphere in the form of these greenhouse gases. Further, harsh wintertime conditions and complex logistics have limited the number of year-round and cold-season studies and hence too our understanding of carbon cycle processes during these periods. We present here a two-year micrometeorological data set of methane and carbon dioxide fluxes, along with supporting soil pore gas profiles, that provide near-continuous data throughout the active summer and cold winter seasons. Net emission of methane and carbon dioxide in one of the study years totalled 3.7 and 89 g C m−2 a−1 respectively, with cold-season methane emission representing 54 % of the annual total. In the other year, net emission totals of methane and carbon dioxide were 4.9 and 485 g C m−2 a−1 respectively, with cold-season methane emission here representing 82 % of the annual total – a larger proportion than has been previously reported in the Arctic tundra. Regression tree analysis suggests that, due to relatively warmer air temperatures and deeper snow depths, deeper soil horizons – where most microbial methanogenic activity takes place – remained warm enough to maintain efficient methane production whilst surface soil temperatures were simultaneously cold enough to limit microbial methanotrophic activity. These results provide valuable insight into how a changing Arctic climate may impact methane emission, and highlight a need to focus on soil temperatures throughout the entire active soil profile, rather than rely on air temperature as a proxy for modelling temperature–methane flux dynamics.

2019 ◽  
Author(s):  
Dean Howard ◽  
Yannick Agnan ◽  
Detlev Helmig ◽  
Yu Yang ◽  
Daniel Obrist

Abstract. Understanding the processes that influence and control carbon cycling in Arctic tundra ecosystems is essential for making accurate predictions about what role these ecosystems will play in potential future climate change scenarios. Particularly, air–surface fluxes of methane and carbon dioxide are of interest as recent observations suggest that the vast stores of soil carbon found in the Arctic tundra are becoming more available to release to the atmosphere in the form of these greenhouse gases. Further, harsh wintertime conditions and complex logistics have limited the number of year-round and cold season studies and hence too our understanding of carbon cycle processes during these periods. We present here a two-year micrometeorological data set of methane and carbon dioxide fluxes that provides near-continuous data throughout the active summer and cold winter seasons. Net emission of methane and carbon dioxide in one of the study years totalled 3.7 and 89 g C m−2 a−1 respectively, with cold season methane emission representing 54% of the annual total. In the other year, net emission totals of methane and carbon dioxide were 4.9 and 485 g C m−2 a−1 respectively, with cold season methane emission here representing 82 % of the annual total – a larger proportion than has been previously reported in the Arctic tundra. Regression tree analysis suggests that, due to relatively warmer air temperatures and deeper snow depths, deeper soil horizons – where most microbial methanogenic activity takes place – remained warm enough to maintain efficient methane production whilst surface soil temperatures were simultaneously cold enough to limit microbial methanotrophic activity. These results provide valuable insight into how a changing Arctic climate may impact methane emission, and highlight a need to focus on soil temperatures throughout the entire active soil profile, rather than rely on air temperature as a proxy for modelling temperature–methane flux dynamics.


2020 ◽  
Author(s):  
Gesa Meyer ◽  
Elyn Humphreys ◽  
Joe Melton ◽  
Peter Lafleur ◽  
Philip Marsh ◽  
...  

<p>Four years of growing season eddy covariance measurements of net carbon dioxide (CO<sub>2</sub>) and energy fluxes were used to examine the similarities/differences in surface-atmosphere interactions at two dwarf shrub tundra sites within Canada’s Southern Arctic ecozone, separated by approximately 1000 km. Both sites, Trail Valley Creek (TVC) and Daring Lake (DL1), are characterised by similar climate (with some differences in radiation due to latitudinal differences), vegetation composition and structure, and are underlain by continuous permafrost, but differ in their soil characteristics. Total atmospheric heating (the sum of latent and sensible heat fluxes) was similar at the two sites. However, at DL1, where the surface organic layer was thinner and mineral soil coarser in texture, latent heat fluxes were greater, sensible heat fluxes were lower, soils were warmer and the active layer thicker. At TVC, cooler soils likely kept ecosystem respiration relatively low despite similar total growing season productivity. As a result, the 4-year mean net growing season ecosystem CO<sub>2 </sub>uptake (May 1 - September 30) was almost twice as large at TVC (64 ± 19 g C m<sup>-2</sup>) compared to DL1 (33 ± 11 g C m<sup>-2</sup>). These results highlight that soil and thaw characteristics are important to understand variability in surface-atmosphere interactions among tundra ecosystems.</p><p>As recent studies have shown, winter fluxes play an important role in the annual CO<sub>2</sub> balance of Arctic tundra ecosystems. However, flux measurements were not available at TVC and DL1 during the cold season. Thus, the process-based ecosystem model CLASSIC (the Canadian Land Surface Scheme including biogeochemical Cycles, formerly CLASS-CTEM) was used to simulate year-round fluxes. In order to represent the Arctic shrub tundra better, shrub and sedge plant functional types were included in CLASSIC and results were evaluated using measurements at DL1. Preliminary results indicate that cold season CO<sub>2</sub> losses are substantial and may exceed the growing season CO<sub>2</sub> uptake at DL1 during 2010-2017. The joint use of observations and models is valuable in order to better constrain the Arctic CO<sub>2</sub> balance.  </p>


2015 ◽  
Vol 113 (1) ◽  
pp. 40-45 ◽  
Author(s):  
Donatella Zona ◽  
Beniamino Gioli ◽  
Róisín Commane ◽  
Jakob Lindaas ◽  
Steven C. Wofsy ◽  
...  

Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the “zero curtain” period, when subsurface soil temperatures are poised near 0 °C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH4 y−1, ∼25% of global emissions from extratropical wetlands, or ∼6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming.


2014 ◽  
Vol 14 (23) ◽  
pp. 13159-13174 ◽  
Author(s):  
S. J. O'Shea ◽  
G. Allen ◽  
M. W. Gallagher ◽  
K. Bower ◽  
S. M. Illingworth ◽  
...  

Abstract. Airborne and ground-based measurements of methane (CH4), carbon dioxide (CO2) and boundary layer thermodynamics were recorded over the Fennoscandian landscape (67–69.5° N, 20–28° E) in July 2012 as part of the MAMM (Methane and other greenhouse gases in the Arctic: Measurements, process studies and Modelling) field campaign. Employing these airborne measurements and a simple boundary layer box model, net regional-scale (~ 100 km) fluxes were calculated to be 1.2 ± 0.5 mg CH4 h−1 m−2 and −350 ± 143 mg CO2 h−1 m−2. These airborne fluxes were found to be relatively consistent with seasonally averaged surface chamber (1.3 ± 1.0 mg CH4 h−1 m−2) and eddy covariance (1.3 ± 0.3 mg CH4 h−1 m−2 and −309 ± 306 mg CO2 h−1 m−2) flux measurements in the local area. The internal consistency of the aircraft-derived fluxes across a wide swath of Fennoscandia coupled with an excellent statistical comparison with local seasonally averaged ground-based measurements demonstrates the potential scalability of such localised measurements to regional-scale representativeness. Comparisons were also made to longer-term regional CH4 climatologies from the JULES (Joint UK Land Environment Simulator) and HYBRID8 land surface models within the area of the MAMM campaign. The average hourly emission flux output for the summer period (July–August) for the year 2012 was 0.084 mg CH4 h−1 m−2 (minimum 0.0 and maximum 0.21 mg CH4 h−1 m−2) for the JULES model and 0.088 mg CH4 h−1 m−2 (minimum 0.0008 and maximum 1.53 mg CH4 h−1 m−2) for HYBRID8. Based on these observations both models were found to significantly underestimate the CH4 emission flux in this region, which was linked to the under-prediction of the wetland extents generated by the models.


2018 ◽  
Vol 32 (7) ◽  
pp. 1087-1106 ◽  
Author(s):  
Janne Rinne ◽  
Eeva-Stiina Tuittila ◽  
Olli Peltola ◽  
Xuefei Li ◽  
Maarit Raivonen ◽  
...  

2005 ◽  
Vol 62 (7) ◽  
pp. 1327-1337 ◽  
Author(s):  
Kenneth F. Drinkwater

Abstract Future CO2-induced climate change scenarios from Global Circulation Models (GCMs) indicate increasing air temperatures, with the greatest warming in the Arctic and Subarctic. Changes to the wind fields and precipitation patterns are also suggested. These will lead to changes in the hydrographic properties of the ocean, as well as the vertical stratification and circulation patterns. Of particular note is the expected increase in ocean temperature. Based upon the observed responses of cod to temperature variability, the expected responses of cod stocks throughout the North Atlantic to the future temperature scenarios are reviewed and discussed here. Stocks in the Celtic and Irish Seas are expected to disappear under predicted temperature changes by the year 2100, while those in the southern North Sea and Georges Bank will decline. Cod will likely spread northwards along the coasts of Greenland and Labrador, occupy larger areas of the Barents Sea, and may even extend onto some of the continental shelves of the Arctic Ocean. In addition, spawning sites will be established further north than currently. It is likely that spring migrations will occur earlier, and fall returns will be later. There is the distinct possibility that, where seasonal sea ice disappears altogether, cod will cease their migration. Individual growth rates for many of the cod stocks will increase, leading to an overall increase in the total production of Atlantic cod in the North Atlantic. These responses of cod to future climate changes are highly uncertain, however, as they will also depend on the changes to climate and oceanographic variables besides temperature, such as plankton production, the prey and predator fields, and industrial fishing.


Sign in / Sign up

Export Citation Format

Share Document