Interferon Production in Embryonating Chicken Eggs Following Inoculation with Infectious Bursal Disease Virus

1979 ◽  
Vol 23 (2) ◽  
pp. 534 ◽  
Author(s):  
J. Gelb ◽  
C. S. Eidson ◽  
S. H. Kleven
2021 ◽  
pp. 2971-2978
Author(s):  
Rawaa Saladdin Jumaa ◽  
Dhuha Ismael Abdulmajeed ◽  
Abdulkarim Jafar Karim

Background and Aim: Infectious bursal disease attacks the poultry industry, mainly young chickens, causing immunosuppression, and death with high economic losses. This study aimed to evaluate the effects of the monoextract, diextracts, and triextracts of Quercus infectoria (QI), Citrus aurantifolia (CiA), and Coffea arabica (CoA) on infectious bursal disease virus (IBDV) in embryonated chicken eggs (ECEs). Materials and Methods: The experimental design consisted of three sets of ECEs at 11 days of age, and each set included seven groups (G1-G7). The extracts of QI, CiA, and CoA were inoculated to ECEs by the chorioallantoic membrane method before, in concomitant (mixed) with, and after IBDV infection to the first, second, and third sets, respectively. The monoextract, diextracts, and triextracts of QI, CiA, and CoA were given at 1%, 2%, 5%, and 10% concentrations to G1-G3, G4-G6, and G7, respectively. Real-time polymerase chain reaction identified and confirmed the virus in accordance with the pathological changes. Results: The monoextract (5-10% concentrations) inhibited IBDV and had no effect on viral infection preinoculation, whereas the monoextract (10% concentration) inhibited IBDV during mixed inoculation and post-inoculation. Diextracts (2-10% concentrations) inhibited IBDV and had no effect on viral infection preinoculation, whereas diextracts (5-10% concentrations) inhibited IBDV during mixed inoculation and post-inoculation. Triextracts (1%, 2%, 5%, and 10% concentrations) inhibited IBDV by ameliorating the pathological changes of the virus and preventing the death of ECEs. Conclusion: The inoculation of herbal extracts, particularly triextracts, alleviates the pathological changes in ECEs infected with IBDV. This study recommends the oral route in evaluating plant extracts against IBDV in poultry.


2017 ◽  
Vol 3 (6) ◽  
pp. 536 ◽  
Author(s):  
Rosa Pangestika ◽  
Rahaju Ernawati

Infectious bursal disease virus is one of the strategic infectious disease in Indonesia. Despite disinfection and vaccination technology has been doing, the cases still frequently occur and it needs another alternative technology to be developed to against IBD virus. This research try to answer the problem, it examines the effect of antiviral activity of silver nanoparticles (AgNPs) solution against the growth of infectious bursal disease virus in embryonated chicken eggs with ELISA Test. The research has two methods, the first method is conducted by mixing a solution of AgNPs and IBD Virus, two hours before inoculated (preventive method) and the second method is the virus inoculated first, 48 hours later the AgNPs solution injected (therapy method). Each method has several dosage of AgNPs solution respectively 0 ppm (positive control 20 ppm, 40 ppm, and 50 ppm). Virus samples taken from the choriallantoic membrane (CAM) and the embryo by crushed method. Results based on the value of OD (optical density) ELISA Test and Statistical Test ANOVA General Linier Models Univariate with Post-Hoc Duncan 5%, both methods have no significant difference (p>0.05), it means the solution of AgNPs has good preventative and therapeutic characteristic. The mean of OD values also showed dosage of 20ppm is most effective dosage in against the growth of the virus, the dosage has significant difference (p<0.05). The decreasing amount of virus in CAM and in embryos were not significantly different (p>0.05), in both CAM and embryo AgNPs solution has good antiviral properties. Keywords : Silver Nanoparticles, Antiviral, Infectious Bursal Disesase, ELISA, Embryonated Chicken Eggs


Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 142
Author(s):  
Yulong Wang ◽  
Nan Jiang ◽  
Linjin Fan ◽  
Li Gao ◽  
Kai Li ◽  
...  

Infectious bursal disease (IBD), an immunosuppressive disease of young chickens, is caused by infectious bursal disease virus (IBDV). Novel variant IBDV (nVarIBDV), a virus that can evade immune protection against very virulent IBDV (vvIBDV), is becoming a threat to the poultry industry. Therefore, nVarIBDV-specific vaccine is much needed for nVarIBDV control. In this study, the VP2 protein of SHG19 (a representative strain of nVarIBDV) was successfully expressed using an Escherichia coli expression system and further purified via ammonium sulfate precipitation and size-exclusion chromatography. The purified protein SHG19-VP2-466 could self-assemble into 25-nm virus-like particle (VLP). Subsequently, the immunogenicity and protective effect of the SHG19-VLP vaccine were evaluated using animal experiments, which indicated that the SHG19-VLP vaccine elicited neutralization antibodies and provided 100% protection against the nVarIBDV. Furthermore, the protective efficacy of the SHG19-VLP vaccine against the vvIBDV was evaluated. Although the SHG19-VLP vaccine induced a comparatively lower vvIBDV-specific neutralization antibody titer, it provided good protection against the lethal vvIBDV. In summary, the SHG19-VLP candidate vaccine could provide complete immune protection against the homologous nVarIBDV as well as the heterologous vvIBDV. This study is of significance to the comprehensive prevention and control of the recent atypical IBD epidemic.


Sign in / Sign up

Export Citation Format

Share Document