Hume Versus Price on Miracles and Prior Probabilities: Testimony and the Bayesian Calculation

1987 ◽  
Vol 37 (147) ◽  
pp. 187 ◽  
Author(s):  
David Owen
1975 ◽  
Author(s):  
G. D. Forbes ◽  
A. D. McLaren ◽  
C. R. M. Prentice

The predictive odds for possible carriers of haemophilia have been calculated using data derived from normal and known carrier populations. For each individual the concentration of factor VII-related antigen (A) and factor VIII biological activity (B) was measured. The data has been studied by linear discriminant analysis linked to a Bayesian calculation of posterior odds using the predictive distributions of both the normal and obligatory carrier populations. The proportion of possible carriers assigned to the definite carrier group or control group is dependent on which betting odds are regarded as most suitable for counselling patients. For instance, if betting odds of 5 : 1 were given it was possible to assign 22 of 32 possible carriers (69 per cent) to control or carrier groups. Of this group of 22 possible carriers, 11 were thought to be normal and 11 were thought to be haemophilia carriers.


2012 ◽  
Vol 58 (9) ◽  
pp. 6101-6109 ◽  
Author(s):  
Jiantao Jiao ◽  
Lin Zhang ◽  
Robert D. Nowak

2013 ◽  
Vol 141 (6) ◽  
pp. 1737-1760 ◽  
Author(s):  
Thomas Sondergaard ◽  
Pierre F. J. Lermusiaux

Abstract This work introduces and derives an efficient, data-driven assimilation scheme, focused on a time-dependent stochastic subspace that respects nonlinear dynamics and captures non-Gaussian statistics as it occurs. The motivation is to obtain a filter that is applicable to realistic geophysical applications, but that also rigorously utilizes the governing dynamical equations with information theory and learning theory for efficient Bayesian data assimilation. Building on the foundations of classical filters, the underlying theory and algorithmic implementation of the new filter are developed and derived. The stochastic Dynamically Orthogonal (DO) field equations and their adaptive stochastic subspace are employed to predict prior probabilities for the full dynamical state, effectively approximating the Fokker–Planck equation. At assimilation times, the DO realizations are fit to semiparametric Gaussian Mixture Models (GMMs) using the Expectation-Maximization algorithm and the Bayesian Information Criterion. Bayes’s law is then efficiently carried out analytically within the evolving stochastic subspace. The resulting GMM-DO filter is illustrated in a very simple example. Variations of the GMM-DO filter are also provided along with comparisons with related schemes.


2016 ◽  
Vol 106 ◽  
pp. 78-89 ◽  
Author(s):  
Caroline Seer ◽  
Florian Lange ◽  
Moritz Boos ◽  
Reinhard Dengler ◽  
Bruno Kopp

2014 ◽  
Vol 64 (1) ◽  
Author(s):  
Krzysztof Kaniowski

AbstractLet P 0 and P 1 be projections in a Hilbert space H. We shall construct a class of optimal measurements for the problem of discrimination between quantum states $$\rho _i = \tfrac{1} {{\dim P_i }}P_i$$, with prior probabilities π 0 and π 1. The probabilities of failure for such measurements will also be derived.


2021 ◽  
Vol 62 ◽  
pp. 9-15
Author(s):  
Marta Karaliutė ◽  
Kęstutis Dučinskas

In this article we focus on the problem of supervised classifying of the spatio-temporal Gaussian random field observation into one of two classes, specified by different mean parameters. The main distinctive feature of the proposed approach is allowing the class label to depend on spatial location as well as on time moment. It is assumed that the spatio-temporal covariance structure factors into a purely spatial component and a purely temporal component following AR(p) model. In numerical illustrations with simulated data, the influence of the values of spatial and temporal covariance parameters to the derived error rates for several prior probabilities models are studied.


2005 ◽  
Vol 7 (1) ◽  
pp. 41 ◽  
Author(s):  
Mohamad Iwan

This research examines financial ratios that distinguish between bankrupt and non-bankrupt companies and make use of those distinguishing ratios to build a one-year prior to bankruptcy prediction model. This research also calculates how many times the type I error is more costly compared to the type II error. The costs of type I and type II errors (cost of misclassification errors) in conjunction to the calculation of prior probabilities of bankruptcy and non-bankruptcy are used in the calculation of the ZETAc optimal cut-off score. The bankruptcy prediction result using ZETAc optimal cut-off score is compared to the bankruptcy prediction result using a cut-off score which does not consider neither cost of classification errors nor prior probabilities as stated by Hair et al. (1998), and for later purposes will be referred to Hair et al. optimum cutting score. Comparison between the prediction results of both cut-off scores is purported to determine the better cut-off score between the two, so that the prediction result is more conservative and minimizes expected costs, which may occur from classification errors.  This is the first research in Indonesia that incorporates type I and II errors and prior probabilities of bankruptcy and non-bankruptcy in the computation of the cut-off score used in performing bankruptcy prediction. Earlier researches gave the same weight between type I and II errors and prior probabilities of bankruptcy and non-bankruptcy, while this research gives a greater weigh on type I error than that on type II error and prior probability of non-bankruptcy than that on prior probability of bankruptcy.This research has successfully attained the following results: (1) type I error is in fact 59,83 times more costly compared to type II error, (2) 22 ratios distinguish between bankrupt and non-bankrupt groups, (3) 2 financial ratios proved to be effective in predicting bankruptcy, (4) prediction using ZETAc optimal cut-off score predicts more companies filing for bankruptcy within one year compared to prediction using Hair et al. optimum cutting score, (5) Although prediction using Hair et al. optimum cutting score is more accurate, prediction using ZETAc optimal cut-off score proved to be able to minimize cost incurred from classification errors.


Sign in / Sign up

Export Citation Format

Share Document