scholarly journals A remark on infinitary languages

1971 ◽  
Vol 36 (3) ◽  
pp. 461-462 ◽  
Author(s):  
Jörg Flum

In his paper [1] Chang provides among other things answers to questions of the following type: Given two models and of powers α and β, respectively, what is the least λ such that implies His proofs are by induction on the quantifier rank of formulas and they use an idea which in the case of ordinary first-order language goes back to Ehrenfeucht and Fraïssé. But, as we show, one can easily prove that if λ is big compared with κ and with the cardinality of the universe of the structure , then every L∞κ-formula is equivalent modulo the set of all Lλκ-sentences which hold in to a Lλκ-formula. From this, Chang's results follow immediately. The same method can be applied to similar problems concerning generalized languages.

1972 ◽  
Vol 37 (3) ◽  
pp. 487-493 ◽  
Author(s):  
John T. Baldwin

In [1] the notions of strongly minimal formula and algebraic closure were applied to the study of ℵ1-categorical theories. In this paper we study a particularly simple class of ℵ1-categorical theories. We characterize this class in terms of the analysis of the Stone space of models of T given by Morley [3].We assume familiarity with [1] and [3], but for convenience we list the principal results and definitions from those papers which are used here. Our notation is the same as in [1] with the following exceptions.We deal with a countable first order language L. We may extend the language L in several ways. If is an L-structure, there is a natural extension of L obtained by adjoining to L a constant a for each (the universe of ). For each sentence A(a1, …, an) ∈ L(A) we say satisfies A(a1, …, an) and write if in Shoenfield's notation If is an L-structure and X is a subset of , then L(X) is the language obtained by adjoining to L a name x for each is the natural expansion of to an L(X)-structure. A structure is an inessential expansion [4, p. 141] of an L-structure if for some .


1966 ◽  
Vol 31 (4) ◽  
pp. 633-640 ◽  
Author(s):  
Mitsuru Yasuhara

The equi-cardinality quantifier1 to be used in this article, written as Qx, is characterised by the following semantical rule: A formula QxA(x) is true in a relational system exactly when the cardinality of the set consisting of these elements which make A(x) true is the same as that of the universe. For instance, QxN(x) is true in 〈Rt, N〉 but false in 〈Rl, N〉 where Rt, Rl, and N are the sets of rational numbers, real numbers, and natural numbers, respectively. We notice that in finite domains the equi-cardinality quantifier is the same as the universal quantifier. For this reason, all relational systems considered in the following are assumed infinite.


1973 ◽  
Vol 38 (3) ◽  
pp. 368-388 ◽  
Author(s):  
John M. Macintyre

Let α be an admissible ordinal and let L be the first order language with equality and a single binary relation ≤. The elementary theory of the α-degrees is the set of all sentences of L which are true in the universe of the α-degrees when ≤ is interpreted as the partial ordering of the α-degrees. Lachlan [6] showed that the elementary theory of the ω-degrees is nonaxiomatizable by proving that any countable distributive lattice with greatest and least members can be imbedded as an initial segment of the degrees of unsolvability. This paper deals with the extension of these results to α-recursion theory for an arbitrary countable admissible α > ω. Given α, we construct a set A with α-degree a such that every countable distributive lattice with greatest and least member is order isomorphic to a segment of α-degrees {d ∣ a ≤αd≤αb} for some α-degree b. As in [6] this implies that the elementary theory of the α-degrees is nonaxiomatizable and hence undecidable.A is constructed in §2. A is a set of integers which is generic with respect to a suitable notion of forcing. Additional applications of such sets are summarized at the end of the section. In §3 we define the notion of a tree and construct a particular tree T0 which is weakly α-recursive in A. Using T0 we can apply the techniques of [6] and [2] to α-recursion theory. In §4 we reduce our main results to three technical lemmas concerning systems of trees. These lemmas are proved in §5.


1975 ◽  
Vol 40 (2) ◽  
pp. 186-196 ◽  
Author(s):  
Ralph Mckenzie

An algorithm has been described by S. Burris [3] which decides if a finite set of identities, whose function symbols are of rank at most 1, has a finite, nontrivial model. (By “nontrivial” it is meant that the universe of the model has at least two elements.) As a consequence of some results announced in the abstracts [2] and [8], it is clear that if the restriction on the ranks of function symbols is relaxed somewhat, then this finite model problem is no longer solvable by an algorithm, or at least not by a “recursive algorithm” as the term is used today.In this paper we prove a sharp form of this negative result; showing, by the way, that Burris' result is in a sense the best possible result in the positive direction. Our main result is that in a first order language whose only function or relation symbol is a 2-place function symbol (the language of groupoids), the set of identities that have no nontrivial model, is recursively inseparable from the set of identities such that the sentence has a finite model. As a corollary, we have that each of the following problems, restricted to sentences defined in the language of groupoids, is algorithmically unsolvable: (1) to decide if an identity has a finite nontrivial model; (2) to decide if an identity has a nontrivial model; (3) to decide if a universal sentence has a finite model; (4) to decide if a universal sentence has a model. We note that the undecidability of (2) was proved earlier by McNulty [13, Theorem 3.6(i)], improving results obtained by Murskiǐ [14] and by Perkins [17]. The other parts of the corollary seem to be new.


1980 ◽  
Vol 23 (1) ◽  
pp. 95-98
Author(s):  
Alan Adamson

Let L be a countable first-order language and T a fixed complete theory in L. If is a model of T, is an n-sequence of variables, and ā=〈a1,…, an〉 is an n-sequence of elements of M, the universe of , we let where ranges over formulas of L containing freely at most the variables υ1,…υn. ā is said to realize in We let be where is the sequence of the first n variables of L.


2010 ◽  
Vol 75 (2) ◽  
pp. 774-784 ◽  
Author(s):  
Jan Krajíček

AbstractLet L be a first-order language and Φ and Ψ two L-sentences that cannot be satisfied simultaneously in any finite L-structure. Then obviously the following principle ChainL,Φ,Ψ(n, m) holds: For any chain of finite L-structures C1, …, Cm with the universe [n] one of the following conditions must fail:For each fixed L and parameters n, m the principle ChainL,Φ,Ψ(n,m) can be encoded into a propositional DNF formula of size polynomial in n, m.For any language L containing only constants and unary predicates we show that there is a constant CL such that the following holds: If a constant depth Frege system in DeMorgan language proves ChainL,Φ,Ψ(n, cL . n) by a size s proof then the class of finite L-structures with universe [n] satisfying Φ can be separated from the class of those L-structures on [n] satisfying ψ by a depth 3 formula of size 2log(S)O(1) and with bottom fan-in log(S)O(1).


1991 ◽  
Vol 56 (1) ◽  
pp. 213-226 ◽  
Author(s):  
Marcel Crabbé

In this paper, we show the normalization of proofs of NF (Quine's New Foundations; see [15]) minus extensionality. This system, called SF (Stratified Foundations) differs in many respects from the associated system of simple type theory. It is written in a first order language and not in a multi-sorted one, and the formulas need not be stratifiable, except in the instances of the comprehension scheme. There is a universal set, but, for a similar reason as in type theory, the paradoxical sets cannot be formed.It is not immediately apparent, however, that SF is essentially richer than type theory. But it follows from Specker's celebrated result (see [16] and [4]) that the stratifiable formula (extensionality → the universe is not well-orderable) is a theorem of SF.It is known (see [11]) that this set theory is consistent, though the consistency of NF is still an open problem.The connections between consistency and cut-elimination are rather loose. Cut-elimination generally implies consistency. But the converse is not true. In the case of set theory, for example, ZF-like systems, though consistent, cannot be freed of cuts because the separation axioms allow the formation of sets from unstratifiable formulas. There are nevertheless interesting partial results obtained when restrictions are imposed on the removable cuts (see [1] and [9]). The systems with stratifiable comprehension are the only known set-theoretic systems that enjoy full cut-elimination.


2017 ◽  
Vol 9 (3) ◽  
pp. 17-30
Author(s):  
Kelly James Clark

In Branden Thornhill-Miller and Peter Millican’s challenging and provocative essay, we hear a considerably longer, more scholarly and less melodic rendition of John Lennon’s catchy tune—without religion, or at least without first-order supernaturalisms (the kinds of religion we find in the world), there’d be significantly less intra-group violence. First-order supernaturalist beliefs, as defined by Thornhill-Miller and Peter Millican (hereafter M&M), are “beliefs that claim unique authority for some particular religious tradition in preference to all others” (3). According to M&M, first-order supernaturalist beliefs are exclusivist, dogmatic, empirically unsupported, and irrational. Moreover, again according to M&M, we have perfectly natural explanations of the causes that underlie such beliefs (they seem to conceive of such natural explanations as debunking explanations). They then make a case for second-order supernaturalism, “which maintains that the universe in general, and the religious sensitivities of humanity in particular, have been formed by supernatural powers working through natural processes” (3). Second-order supernaturalism is a kind of theism, more closely akin to deism than, say, Christianity or Buddhism. It is, as such, universal (according to contemporary psychology of religion), empirically supported (according to philosophy in the form of the Fine-Tuning Argument), and beneficial (and so justified pragmatically). With respect to its pragmatic value, second-order supernaturalism, according to M&M, gets the good(s) of religion (cooperation, trust, etc) without its bad(s) (conflict and violence). Second-order supernaturalism is thus rational (and possibly true) and inconducive to violence. In this paper, I will examine just one small but important part of M&M’s argument: the claim that (first-order) religion is a primary motivator of violence and that its elimination would eliminate or curtail a great deal of violence in the world. Imagine, they say, no religion, too.Janusz Salamon offers a friendly extension or clarification of M&M’s second-order theism, one that I think, with emendations, has promise. He argues that the core of first-order religions, the belief that Ultimate Reality is the Ultimate Good (agatheism), is rational (agreeing that their particular claims are not) and, if widely conceded and endorsed by adherents of first-order religions, would reduce conflict in the world.While I favor the virtue of intellectual humility endorsed in both papers, I will argue contra M&M that (a) belief in first-order religion is not a primary motivator of conflict and violence (and so eliminating first-order religion won’t reduce violence). Second, partly contra Salamon, who I think is half right (but not half wrong), I will argue that (b) the religious resources for compassion can and should come from within both the particular (often exclusivist) and the universal (agatheistic) aspects of religious beliefs. Finally, I will argue that (c) both are guilty, as I am, of the philosopher’s obsession with belief. 


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Ke-Pan Xie ◽  
Ligong Bian ◽  
Yongcheng Wu

Abstract We study electroweak baryogenesis in the SO(6)/SO(5) composite Higgs model with the third generation quarks being embedded in the 20′ representation of SO(6). The scalar sector contains one Higgs doublet and one real singlet, and their potential is given by the Coleman-Weinberg potential evaluated from the form factors of the lightest vector and fermion resonances. We show that the resonance masses at $$ \mathcal{O}\left(1\sim 10\kern0.5em \mathrm{TeV}\right) $$ O 1 ∼ 10 TeV can generate a potential that triggers the strong first-order electroweak phase transition (SFOEWPT). The CP violating phase arising from the dimension-6 operator in the top sector is sufficient to yield the observed baryon asymmetry of the universe. The SFOEWPT parameter space is detectable at the future space-based detectors.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Sebastian Baum ◽  
Marcela Carena ◽  
Nausheen R. Shah ◽  
Carlos E. M. Wagner ◽  
Yikun Wang

Abstract Electroweak baryogenesis is an attractive mechanism to generate the baryon asymmetry of the Universe via a strong first order electroweak phase transition. We compare the phase transition patterns suggested by the vacuum structure at the critical temperatures, at which local minima are degenerate, with those obtained from computing the probability for nucleation via tunneling through the barrier separating local minima. Heuristically, nucleation becomes difficult if the barrier between the local minima is too high, or if the distance (in field space) between the minima is too large. As an example of a model exhibiting such behavior, we study the Next-to-Minimal Supersymmetric Standard Model, whose scalar sector contains two SU(2) doublets and one gauge singlet. We find that the calculation of the nucleation probabilities prefers different regions of parameter space for a strong first order electroweak phase transition than the calculation based solely on the critical temperatures. Our results demonstrate that analyzing only the vacuum structure via the critical temperatures can provide a misleading picture of the phase transition patterns, and, in turn, of the parameter space suitable for electroweak baryogenesis.


Sign in / Sign up

Export Citation Format

Share Document