A complete and consistent modal set theory

1967 ◽  
Vol 32 (1) ◽  
pp. 93-103 ◽  
Author(s):  
Frederic B. Fitch

1.1. The aim of this paper is the construction of a demonstrably consistent system of set theory that (1) contains roughly the same amount of mathematics as the writer's system K′ [3], including a theory of continuous functions of real numbers, and (2) provides a way for expressing in the object language various propositions which, in the case of K′, could be expressed only in the metalanguage, for example, general propositions about all real numbers. It was not originally intended that the desired system should be a modal logic, but the modal character of the system appears to be a natural outgrowth of the way it is constructed. A detailed treatment of the natural, rational, and real numbers is left for a subsequent paper.

1999 ◽  
Vol 64 (4) ◽  
pp. 1601-1627 ◽  
Author(s):  
Kai Hauser

AbstractFor a canonical model of set theory whose projective theory of the real numbers is stable under set forcing extensions, a set of reals of minimal complexity is constructed which fails to be universally Baire. The construction uses a general method for generating non-universally Baire sets via the Levy collapse of a cardinal, as well as core model techniques. Along the way it is shown (extending previous results of Steel) how sufficiently iterable fine structure models recognize themselves as global core models.


Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3593-3597
Author(s):  
Ravindra Bisht

Combining the approaches of functionals associated with h-concave functions and fixed point techniques, we study the existence and uniqueness of a solution for a class of nonlinear integral equation: x(t) = g1(t)-g2(t) + ? ?t,0 V1(t,s)h1(s,x(s))ds + ? ?T,0 V2(t,s)h2(s,x(s))ds; where C([0,T];R) denotes the space of all continuous functions on [0,T] equipped with the uniform metric and t?[0,T], ?,? are real numbers, g1, g2 ? C([0, T],R) and V1(t,s), V2(t,s), h1(t,s), h2(t,s) are continuous real-valued functions in [0,T]xR.


Order ◽  
2021 ◽  
Author(s):  
Péter Vrana

AbstractGiven a commutative semiring with a compatible preorder satisfying a version of the Archimedean property, the asymptotic spectrum, as introduced by Strassen (J. reine angew. Math. 1988), is an essentially unique compact Hausdorff space together with a map from the semiring to the ring of continuous functions. Strassen’s theorem characterizes an asymptotic relaxation of the preorder that asymptotically compares large powers of the elements up to a subexponential factor as the pointwise partial order of the corresponding functions, realizing the asymptotic spectrum as the space of monotone semiring homomorphisms to the nonnegative real numbers. Such preordered semirings have found applications in complexity theory and information theory. We prove a generalization of this theorem to preordered semirings that satisfy a weaker polynomial growth condition. This weaker hypothesis does not ensure in itself that nonnegative real-valued monotone homomorphisms characterize the (appropriate modification of the) asymptotic preorder. We find a sufficient condition as well as an equivalent condition for this to hold. Under these conditions the asymptotic spectrum is a locally compact Hausdorff space satisfying a similar universal property as in Strassen’s work.


2013 ◽  
Vol 21 (3) ◽  
pp. 185-191
Author(s):  
Keiko Narita ◽  
Noboru Endou ◽  
Yasunari Shidama

Summary In this article, we described basic properties of Riemann integral on functions from R into Real Banach Space. We proved mainly the linearity of integral operator about the integral of continuous functions on closed interval of the set of real numbers. These theorems were based on the article [10] and we referred to the former articles about Riemann integral. We applied definitions and theorems introduced in the article [9] and the article [11] to the proof. Using the definition of the article [10], we also proved some theorems on bounded functions.


1942 ◽  
Vol 7 (2) ◽  
pp. 65-89 ◽  
Author(s):  
Paul Bernays

The foundation of analysis does not require the full generality of set theory but can be accomplished within a more restricted frame. Just as for number theory we need not introduce a set of all finite ordinals but only a class of all finite ordinals, all sets which occur being finite, so likewise for analysis we need not have a set of all real numbers but only a class of them, and the sets with which we have to deal are either finite or enumerable.We begin with the definitions of infinity and enumerability and with some consideration of these concepts on the basis of the axioms I—III, IV, V a, V b, which, as we shall see later, are sufficient for general set theory. Let us recall that the axioms I—III and V a suffice for establishing number theory, in particular for the iteration theorem, and for the theorems on finiteness.


Author(s):  
Nicolaas Govert de Bruijn

After millennia of mathematics we have reached a level of understanding that can be represented physically. Humankind has managed to disentangle the intricate mixture of language, metalanguage and interpretation, isolating a body of formal, abstract mathematics that can be completely verified by machines. Systems for computer-aided verification have philosophical aspects. The design and usage of such systems are influenced by the way we think about mathematics, but it also works the other way. A number of aspects of this mutual influence will be discussed in this paper. In particular, attention will be given to philosophical aspects of type-theoretical systems. These definitely call for new attitudes: throughout the twentieth century most mathematicians had been trained to think in terms of untyped sets. The word “philosophy” will be used lightheartedly. It does not refer to serious professional philosophy, but just to meditation about the way one does one’s job. What used to be called philosophy of mathematics in the past was for a large part subject oriented. Most people characterized mathematics by its subject matter, classifying it as the science of space and number. From the verification system’s point of view, however, subject matter is irrelevant. Verification is involved with the rules of mathematical reasoning, not with the subject. The picture may be a bit confused, however, by the fact that so many people consider set theory, in particular untyped set theory, as part of the language and foundation of mathematics, rather than as a particular subject treated by mathematics. The views expressed in this paper are quite personal, and can mainly be carried back to the author’s design of the Automath system in the late 1960s, where the way to look upon the meaning (philosophy) of mathematics is inspired by the usage of the unification system and vice versa. See de Bruijn 1994b for various philosophical items concerning Automath, and Nederpelt et al. 1994, de Bruin 1980, de Bruijn 1991a for general information about the Automath project. Some of the points of view given in this paper are matters of taste, but most of them were imposed by the task of letting a machine follow what we say, a machine without any knowledge of our mathematical culture and without any knowledge of physical laws.


1962 ◽  
Vol 14 ◽  
pp. 597-601 ◽  
Author(s):  
J. Kiefer

The main object of this paper is to prove the following:Theorem. Let f1, … ,fk be linearly independent continuous functions on a compact space. Then for 1 ≤ s ≤ k there exist real numbers aij, 1 ≤ i ≤ s, 1 ≤ j ≤ k, with {aij, 1 ≤ i, j ≤ s} n-singular, and a discrete probability measure ε*on, such that(a) the functions gi = Σj=1kaijfj 1 ≤ i ≤ s, are orthonormal (ε*) to the fj for s < j ≤ k;(b)The result in the case s = k was first proved in (2). The result when s < k, which because of the orthogonality condition of (a) is more general than that when s = k, was proved in (1) under a restriction which will be discussed in § 3. The present proof does not require this ad hoc restriction, and is more direct in approach than the method of (2) (although involving as much technical detail as the latter in the case when the latter applies).


Sign in / Sign up

Export Citation Format

Share Document