Computational complexity, speedable and levelable sets

1977 ◽  
Vol 42 (4) ◽  
pp. 545-563 ◽  
Author(s):  
Robert I. Soare

One of the most interesting aspects of the theory of computational complexity is the speed-up phenomenon such as the theorem of Blum [6, p. 326] which asserts the existence of a 0, 1-valued total recursive function with arbitrarily large speed-up. Blum and Marques [10] extended the speed-up definitions from total to partial recursive functions, or equivalently, to recursively enumerable (r.e.) sets, and introduced speedable and levelable sets. They classified the effectively speedable sets as the subcreative sets but remarked that “the characterizations we provided for speedable and levelable sets do not seem to bear a close relationship to any already well-studied class of recursively enumerable sets.” The purpose of this paper is to give an “information theoretic” characterization of speedable and levelable sets in terms of index sets resembling the jump operator. From these characterizations we derive numerous consequences about the degrees and structure of speedable and levelable sets.

1980 ◽  
Vol 45 (3) ◽  
pp. 417-438 ◽  
Author(s):  
Victor L. Bennison

Though researchers in the field of abstract computational complexity theory have utilized many of the tools of recursive function theory in the development of their field, the early results obtained (e.g., see [8]) seemed to be rather independent of results in recursion theory (at least to the extent that the results were not uniformly interesting to both varieties of theorists). It seems to have been generally accepted, however, that strong parallels of one form or another must exist between the two fields. Indeed, recent results of Blum and Marques [7], Morris [13], Soare [15] and Bennison [1], [3] have revealed a striking correspondence between complexity theoretic properties and recursion theoretic properties. These results are not contrived, but rather link together interesting properties which had arisen naturally and independently in their respective fields. This paper presents the results of research aimed at finding a recursion theoretic characterization for a complexity theoretic property which had arisen from the study of the speed-up phenomenon.In abstract computational complexity theory we are concerned with categorizing computable functions or sets according to their relative difficulty of computation. The phrase “difficult to compute” may take on different meanings depending on which criteria (complexity theoretic properties) we use to define what it means for a function or set to be hard to compute. In the abstract setting, however, such criteria should yield the same classes of functions or sets regardless of the underlying abstract complexity measure (in the sense of Blum [4], e.g., tape, time, etc.). In other words, such criteria should be measure-independent. In this paper we will be considering one way of defining “difficult to compute”. Namely, we shall say that a function or set is difficult to compute if it does not have a recursively enumerable complexity sequence as defined by Meyer and Fischer [12]. For a property to have a recursion theoretic characterization it must be measure-independent, for a recursion theoretic property is, by its very nature, measure-independent. It will not be immediately obvious whether or not the property of having an r.e. complexity sequence is measure-independent. We attack this question by first considering an alternative definition of an r.e. complexity sequence, one which is easily seen to be measure-independent.


2021 ◽  
Vol 31 (3) ◽  
pp. 033107
Author(s):  
F. R. Iaconis ◽  
A. A. Jiménez Gandica ◽  
J. A. Del Punta ◽  
C. A. Delrieux ◽  
G. Gasaneo

1973 ◽  
Vol 38 (2) ◽  
pp. 249-271 ◽  
Author(s):  
S. B. Cooper

The jump a′ of a degree a is defined to be the largest degree recursively enumerable in a in the upper semilattice of degrees of unsolvability. We examine below some of the ways in which the jump operation is related to the partial ordering of the degrees. Fried berg [3] showed that the equation a = x′ is solvable if and only if a ≥ 0′. Sacks [13] showed that we can find a solution of a = x′ which is ≤ 0′ (and in fact is r.e.) if and only if a ≥ 0′ and is r.e. in 0′. Spector [16] constructed a minimal degree and Sacks [13] constructed one ≤ 0′. So far the only result concerning the relationship between minimal degrees and the jump operator is one due to Yates [17] who showed that there is a minimal predecessor for each non-recursive r.e. degree, and hence that there is a minimal degree with jump 0′. In §1, we obtain an analogue of Friedberg's theorem by constructing a minimal degree solution for a = x′ whenever a ≥ 0′. We incorporate Friedberg5s original number-theoretic device with a complicated sequence of approximations to the nest of trees necessary for the construction of a minimal degree. The proof of Theorem 1 is a revision of an earlier, shorter presentation, and incorporates many additions and modifications suggested by R. Epstein. In §2, we show that any hope for a result analogous to that of Sacks on the jumps of r.e. degrees cannot be fulfilled since 0″ is not the jump of any minimal degree below 0′. We use a characterization of the degrees below 0′ with jump 0″ similar to that found for r.e. degrees with jump 0′ by R. W. Robinson [12]. Finally, in §3, we give a proof that every degree a ≤ 0′ with a′ = 0″ has a minimal predecessor. Yates [17] has already shown that every nonzero r.e. degree has a minimal predecessor, but that there is a nonzero degree ≤ 0′ with no minimal predecessor (see [18]; or for the original unrelativized result see [10] or [4]).


1996 ◽  
Vol 53 (4) ◽  
pp. 3257-3270 ◽  
Author(s):  
Rüdiger Schack ◽  
Carlton M. Caves

2012 ◽  
Vol 58 (9) ◽  
pp. 5711-5724 ◽  
Author(s):  
Lav R. Varshney ◽  
Sanjoy K. Mitter ◽  
Vivek K Goyal

2018 ◽  
Vol 64 (7) ◽  
pp. 5312-5325 ◽  
Author(s):  
Giusi Alfano ◽  
Carla-Fabiana Chiasserini ◽  
Alessandro Nordio ◽  
Siyuan Zhou

Sign in / Sign up

Export Citation Format

Share Document