Two-dimensional partial orderings: Recursive model theory

1980 ◽  
Vol 45 (1) ◽  
pp. 121-132 ◽  
Author(s):  
Alfred B. Manaster ◽  
Joseph G. Rosenstein

In this paper and the companion paper [9] we describe a number of contrasts between the theory of linear orderings and the theory of two-dimensional partial orderings.The notion of dimensionality for partial orderings was introduced by Dushnik and Miller [3], who defined a partial ordering 〈A, R〉 to be n-dimensional if there are n linear orderings of A, 〈A, L1〉, 〈A, L2〉 …, 〈A, Ln〉 such that R = L1 ∩ L2 ∩ … ∩ Ln. Thus, for example, if Q is the linear ordering of the rationals, then the (rational) plane Q × Q with the product ordering (〈x1, y1〉 ≤Q×Q 〈x2, y2, if and only if x1 ≤ x2 and y1 ≤ y2) is 2-dimensional, since ≤Q×Q is the intersection of the two lexicographic orderings of Q × Q. In fact, as shown by Dushnik and Miller, a countable partial ordering is n-dimensional if and only if it can be embedded as a subordering of Qn.Two-dimensional partial orderings have attracted the attention of a number of combinatorialists in recent years. A basis result recently obtained, independently, by Kelly [7] and Trotter and Moore [10], describes explicitly a collection of finite partial orderings such that a partial ordering is a 2dpo if and only if it contains no element of as a subordering.

1980 ◽  
Vol 45 (1) ◽  
pp. 133-143 ◽  
Author(s):  
Alfred B. Manaster ◽  
Joseph G. Rosenstein

In this paper we examine the class of two-dimensional partial orderings from the perspective of undecidability. We shall see that from this perspective the class of 2dpo's is more similar to the class of all partial orderings than to its one-dimensional subclass, the class of all linear orderings. More specifically, we shall describe an argument which lends itself to proofs of the following four results:(A) the theory of 2dpo's is undecidable:(B) the theory of 2dpo's is recursively inseparable from the set of sentences refutable in some finite 2dpo;(C) there is a sentence which is true in some 2dpo but which has no recursive model;(D) the theory of planar lattices is undecidable.It is known that the theory of linear orderings is decidable (Lauchli and Leonard [4]). On the other hand, the theories of partial orderings and lattices were shown to be undecidable by Tarski [14], and that each of these theories is recursively inseparable from its finitely refutable statements was shown by Taitslin [13]. Thus, the complexity of the theories of partial orderings and lattices is, by (A), (B) and (D), already reflected in the 2dpo's and planar lattices.As pointed out by J. Schmerl, bipartite graphs can be coded into 2dpo's, so that (A) and (B) could also be obtained by applying a Rabin-Scott style argument [9] to Rogers' result [11] that the theory of bipartite graphs is undecidable and to Lavrov's result [5] that the theory of bipartite graphs is recursively inseparable from the set of sentences refutable in some finite bipartite graph. (However, (C) and (D) do not seem to follow from this type of argument.)


2012 ◽  
Vol 18 (1) ◽  
pp. 131-134
Author(s):  
Daniel Turetsky

1991 ◽  
Vol 56 (4) ◽  
pp. 1212-1229
Author(s):  
Robert Bonnet ◽  
Matatyahu Rubin

AbstractFor a complete theory of Boolean algebras T, let MT denote the class of countable models of T. For B1, B2 ∈ MT, let B1 ≤ B2 mean that B2 is elementarily embeddable in B2. Theorem 1. For every complete theory of Boolean algebras T, if T ≠ Tω, then ‹MT, ≤› is well-quasi-ordered. ∎ We define Tω. For a Boolean algebra B, let I(B) be the ideal of all elements of the form a + s such that B ↾ a is an atomic Boolean algebra and B ↾ s is an atomless Boolean algebra. The Tarski derivative of B is defined as follows: B(0) = B and B(n + 1) = B(n)/I(B(n)). Define Tω to be the theory of all Boolean algebras such that for every n ∈ ω, B(n) ≠ {0}. By Tarski [1949], Tω is complete. Recall that ‹A, < › is partial well-quasi-ordering, it is a partial quasi-ordering and for every {ai, ⃒ i ∈ ω} ⊆ A, there are i < j < ω such that ai ≤ aj. Theorem 2. contains a subset M such that the partial orderings ‹M, ≤ ↾ M› and are isomorphic. ∎ Let M′0 denote the class of all countable Boolean algebras. For B1, B2 ∈ M′0, let B1 ≤′ B2 mean that B1 is embeddable in B2. Remark. ‹M′0, ≤′› is well-quasi-ordered. ∎ This follows from Laver's theorem [1971] that the class of countable linear orderings with the embeddability relation is well-quasi-ordered and the fact that every countable Boolean algebra is isomorphic to a Boolean algebra of a linear ordering.


2005 ◽  
Vol 70 (2) ◽  
pp. 360-378 ◽  
Author(s):  
Antonio Montalbán

AbstractTwo linear orderings areequimorphicif each can be embedded into the other. We prove that every hyperarithmetic linear ordering is equimorphic to a recursive one.On the way to our main result we prove that a linear ordering has Hausdorff rank less thanif and only if it is equimorphic to a recursive one. As a corollary of our proof we prove that, given a recursive ordinal α, the partial ordering of equimorphism types of linear orderings of Hausdorff rank at most α ordered by embeddablity is recursively presentable.


1998 ◽  
Vol 32 (10) ◽  
pp. 1116-1118
Author(s):  
N. S. Averkiev ◽  
A. M. Monakhov ◽  
A. Yu. Shik ◽  
P. M. Koenraad

1968 ◽  
Vol 20 ◽  
pp. 535-554 ◽  
Author(s):  
R. A. Dean ◽  
Gordon Keller

Let n be an ordinal. A partial ordering P of the ordinals T = T(n) = {w: w < n} is called natural if x P y implies x ⩽ y.A natural partial ordering, hereafter abbreviated NPO, of T(n) is thus a coarsening of the natural total ordering of the ordinals. Every partial ordering of a finite set 5 is isomorphic to a natural partial ordering. This is a consequence of the theorem of Szpielrajn (5) which states that every partial ordering of a set may be refined to a total ordering. In this paper we consider only natural partial orderings. In the first section we obtain theorems about the lattice of all NPO's of T(n).


1986 ◽  
Vol 108 (1) ◽  
pp. 64-70 ◽  
Author(s):  
O. K. Kwon ◽  
R. H. Pletcher

A viscous-inviscid interaction scheme has been developed for computing steady incompressible laminar and turbulent flows in two-dimensional duct expansions. The viscous flow solutions are obtained by solving the boundary-layer equations inversely in a coupled manner by a finite-difference scheme; the inviscid flow is computed by numerically solving the Laplace equation for streamfunction using an ADI finite-difference procedure. The viscous and inviscid solutions are matched iteratively along displacement surfaces. Details of the procedure are presented in the present paper (Part 1), along with example applications to separated flows. The results compare favorably with experimental data. Applications to turbulent flows over a rearward-facing step are described in a companion paper (Part 2).


1944 ◽  
Vol 11 (3) ◽  
pp. A149-A161
Author(s):  
Gabriel Kron

Abstract This paper presents equivalent circuits representing the partial differential equations of the theory of elasticity for bodies of arbitrary shapes. Transient, steady-state, or sinusoidally oscillating elastic-field phenomena may now be studied, within any desired degree of accuracy, either by a “network analyzer,” or by numerical- and analytical-circuit methods. Such problems are the propagation of elastic waves, determination of the natural frequencies of vibration of elastic bodies, or of stresses and strains in steady-stressed states. The elastic body may be non-homogeneous, may have arbitrary shape and arbitrary boundary conditions, it may rotate at a uniform angular velocity and may, for representation, be divided into blocks of uneven length in different directions. The circuits are developed to handle both two- and three-dimensional phenomena. They are expressed in all types of orthogonal curvilinear reference frames in order to simplify the boundary relations and to allow the solution of three-dimensional problems with axial and other symmetry by the use of only a two-dimensional network. Detailed circuits are given for the important cases of axial symmetry, cylindrical co-ordinates (two-dimensional) and rectangular co-ordinates (two- and three-dimensional). Nonlinear stress-strain relations in the plastic range may be handled by a step-by-step variation of the circuit constants. Nonisotropic bodies and nonorthogonal reference frames, however, require an extension of the circuits given. The circuits for steady-state stress and small oscillation phenomena require only inductances and capacitors, while the circuits for transients require also standard (not ideal) transformers. A companion paper deals in detail with numerical and experimental methods to solve the equivalent circuits.


1963 ◽  
Vol 6 (2) ◽  
pp. 239-255
Author(s):  
Stanton M. Trott

The model of the real numbers described below was suggested by the fact that each irrational number ρ determines a linear ordering of J2, the additive group of ordered pairs of integers. To obtain the ordering, we define (m, n) ≤ (m', n') to mean that (m'- m)ρ ≤ n' - n. This order is invariant with group translations, and hence is called a "group linear ordering". It is completely determined by the set of its "positive" elements, in this case, by the set of integer pairs (m, n) such that (0, 0) ≤ (m, n), or, equivalently, mρ < n. The law of trichotomy for linear orderings dictates that only the zero of an ordered group can be both positive and negative.


Sign in / Sign up

Export Citation Format

Share Document