Decomposition of totally transcendental modules

1980 ◽  
Vol 45 (1) ◽  
pp. 155-164 ◽  
Author(s):  
Steven Garavaglia

The main theorem of this paper states that if R is a ring and is a totally transcendental R-module, then has a unique decomposition as a direct sum of indecomposable R-modules. Natural examples of totally transcendental modules are injective modules over noetherian rings, artinian modules over commutative rings, projective modules over left-perfect, right-coherent rings, and arbitrary modules over Σ – α-gens rings. Therefore, our decomposition theorem yields as special cases the purely algebraic unique decomposition theorems for these four classes of modules due to Matlis; Warfield; Mueller, Eklof, and Sabbagh; and Shelah and Fisher. These results and a number of other corollaries about totally transcendental modules are covered in §1. In §2, I show how the results of § 1 can be used to give an improvement of Baur's classification of ω-categorical modules over countable rings. In §3, the decomposition theorem is used to study modules with quantifier elimination over noetherian rings.The goals of this section are to prove the decomposition theorem and to derive some of its immediate corollaries. I will begin with some notational conventions. R will denote a ring with an identity element. LR is the language of left R-modules described in [4, p. 251] and TR is the theory of left R-modules. “R-module” will mean “unital left R-module”. A formula will mean an LR-formula.

2019 ◽  
Vol 19 (03) ◽  
pp. 2050050 ◽  
Author(s):  
Yanjiong Yang ◽  
Xiaoguang Yan

In this paper, we study the conditions under which a module is a strict Mittag–Leffler module over the class [Formula: see text] of Gorenstein injective modules. To this aim, we introduce the notion of [Formula: see text]-projective modules and prove that over noetherian rings, if a module can be expressed as the direct limit of finitely presented [Formula: see text]-projective modules, then it is a strict Mittag–Leffler module over [Formula: see text]. As applications, we prove that if [Formula: see text] is a two-sided noetherian ring, then [Formula: see text] is a covering class closed under pure submodules if and only if every injective module is strict Mittag–Leffler over [Formula: see text].


2019 ◽  
Vol 18 (07) ◽  
pp. 1950137
Author(s):  
Lixin Mao

Given an [Formula: see text]-module [Formula: see text] and a class of [Formula: see text]-modules [Formula: see text] over a commutative ring [Formula: see text], we investigate the relationship between the existence of [Formula: see text]-envelopes (respectively, [Formula: see text]-covers) and the existence of [Formula: see text]-envelopes or [Formula: see text]-envelopes (respectively, [Formula: see text]-covers or [Formula: see text]-covers) of modules. As a consequence, we characterize coherent rings, Noetherian rings, perfect rings and Artinian rings in terms of envelopes and covers by [Formula: see text]-projective, [Formula: see text]-flat, [Formula: see text]-injective and [Formula: see text]-[Formula: see text]-injective modules, where [Formula: see text] is a semidualizing [Formula: see text]-module.


1977 ◽  
Vol 24 (4) ◽  
pp. 496-510 ◽  
Author(s):  
Saad Mohamed ◽  
Surjeet Singh

AbstractIn this paper we introduce and study the notion of dual continuous (d–continuous) modules. A decomposition theorem for a d–continuous module is proved; this generalizes all known decomposition theorems for quasi-projective modules. Besides we study the structure of d–continuous modules over some special types of rings.


Author(s):  
Wenjing Chen ◽  
Zhongkui Liu

In this paper, we construct some model structures corresponding Gorenstein [Formula: see text]-modules and relative Gorenstein flat modules associated to duality pairs, Frobenius pairs and cotorsion pairs. By investigating homological properties of Gorenstein [Formula: see text]-modules and some known complete hereditary cotorsion pairs, we describe several types of complexes and obtain some characterizations of Iwanaga–Gorenstein rings. Based on some facts given in this paper, we find new duality pairs and show that [Formula: see text] is covering as well as enveloping and [Formula: see text] is preenveloping under certain conditions, where [Formula: see text] denotes the class of Gorenstein [Formula: see text]-injective modules and [Formula: see text] denotes the class of Gorenstein [Formula: see text]-flat modules. We give some recollements via projective cotorsion pair [Formula: see text] cogenerated by a set, where [Formula: see text] denotes the class of Gorenstein [Formula: see text]-projective modules. Also, many recollements are immediately displayed through setting specific complete duality pairs.


2019 ◽  
Vol 18 (12) ◽  
pp. 1950235 ◽  
Author(s):  
Truong Cong Quynh ◽  
Adel Nailevich Abyzov ◽  
Nguyen Thi Thu Ha ◽  
Tülay Yildirim

The aim of this paper is to introduce a general setting where some well-known results on essentially injective modules, automorphism-(co)invariant modules and small projective modules can be obtained by developing a general theory of modules which are (co)invariant under automorphisms of their covers and envelopes.


1971 ◽  
Vol 36 (4) ◽  
pp. 623-649 ◽  
Author(s):  
Gabriel Sabbagh ◽  
Paul Eklof

This paper is concerned with questions of the following kind: let L be a language of the form Lαω and let be a class of modules over a fixed ring or a class of rings; is it possible to define in L? We will be mainly interested in the cases where L is Lωω or L∞ω and is a familiar class in homologic algebra or ring theory.In Part I we characterize the rings Λ such that the class of free (respectively projective, respectively flat) left Λ-modules is elementary. In [12] we solved the corresponding problems for injective modules; here we show that the class of injective Λ-modules is definable in L∞ω if and only if it is elementary. Moreover we identify the right noetherian rings Λ such that the class of projective (respectively free) left Λ-modules is definable in L∞ω.


2019 ◽  
Vol 19 (01) ◽  
pp. 2050007
Author(s):  
Weiqing Li ◽  
Dong Liu

Let [Formula: see text] and [Formula: see text] be arbitrary fixed integers. We prove that there exists a ring [Formula: see text] such that: (1) [Formula: see text] is a right [Formula: see text]-ring; (2) [Formula: see text] is not a right [Formula: see text]-ring for each non-negative integer [Formula: see text]; (3) [Formula: see text] is not a right [Formula: see text]-ring [Formula: see text]for [Formula: see text], for each non-negative integer [Formula: see text]; (4) [Formula: see text] is a right [Formula: see text]-coherent ring; (5) [Formula: see text] is not a right [Formula: see text]-coherent ring. This shows the richness of right [Formula: see text]-rings and right [Formula: see text]-coherent rings, and, in particular, answers affirmatively a problem posed by Costa in [D. L. Costa, Parameterizing families of non-Noetherian rings, Comm. Algebra 22 (1994) 3997–4011.] when the ring in question is non-commutative.


Author(s):  
P. F. Smith

SynopsisFor various classes of right noetherian rings it is shown that projective right modules are either finitely generated or free.


1991 ◽  
Vol 34 (1) ◽  
pp. 155-160 ◽  
Author(s):  
H. Ansari Toroghy ◽  
R. Y. Sharp

LetEbe an injective module over the commutative Noetherian ringA, and letabe an ideal ofA. TheA-module (0:Eα) has a secondary representation, and the finite set AttA(0:Eα) of its attached prime ideals can be formed. One of the main results of this note is that the sequence of sets (AttA(0:Eαn))n∈Nis ultimately constant. This result is analogous to a theorem of M. Brodmann that, ifMis a finitely generatedA-module, then the sequence of sets (AssA(M/αnM))n∈Nis ultimately constant.


2018 ◽  
Vol 107 (02) ◽  
pp. 181-198
Author(s):  
JAMES GILLESPIE

We introduce what is meant by an AC-Gorenstein ring. It is a generalized notion of Gorenstein ring that is compatible with the Gorenstein AC-injective and Gorenstein AC-projective modules of Bravo–Gillespie–Hovey. It is also compatible with the notion of $n$ -coherent rings introduced by Bravo–Perez. So a $0$ -coherent AC-Gorenstein ring is precisely a usual Gorenstein ring in the sense of Iwanaga, while a $1$ -coherent AC-Gorenstein ring is precisely a Ding–Chen ring. We show that any AC-Gorenstein ring admits a stable module category that is compactly generated and is the homotopy category of two Quillen equivalent abelian model category structures. One is projective with cofibrant objects that are Gorenstein AC-projective modules while the other is an injective model structure with fibrant objects that are Gorenstein AC-injectives.


Sign in / Sign up

Export Citation Format

Share Document