On partitioning the infinite subsets of large cardinals

1984 ◽  
Vol 49 (2) ◽  
pp. 539-541 ◽  
Author(s):  
R. J. Watro

Let λ be an ordinal less than or equal to an infinite cardinal κ. For S ⊂ κ, [S]λ denotes the collection of all order type λ subsets of S. A set X ⊂ [κ]λ will be called Ramsey iff there exists p ∈ [κ]κ such that either [p]λ ⊂ X or [p]λ ∩ X = ∅. The set p is called homogeneous for X.The infinite Ramsey theorem implies that all subsets of [ω]n are Ramsey for n < ω. Using the axiom of choice, one can define a non-Ramsey subset of [ω]ω. In [GP], Galvin and Prikry showed that all Borel subsets of [ω]ω are Ramsey, where one topologizes [ω]ω as a subspace of Baire space. Silver [S] proved that analytic sets are Ramsey, and observed that this is best possible in ZFC.When κ > ω, the assertion that all subsets of [κ]n are Ramsey is a large cardinal hypothesis equivalent to κ being weakly compact (and strongly inaccessible). Again, is not possible in ZFC to have all subsets of [κ]ω Ramsey. The analogy to the Galvin-Prikry theorem mentioned above was established by Kleinberg, extending work by Kleinberg and Shore in [KS]. The set [κ]ω is given a topology as a subspace of κω, which has the usual product topology, κ taken as discrete. It was shown that all open subsets of [κ]ω are Ramsey iff κ is a Ramsey cardinal (that is, κ → (κ)<ω).In this note we examine the spaces [κ]λ for κ ≥ λ ≥ ω. We show that κ Ramsey implies all open subsets of [κ]λ are Ramsey for λ < κ, and that if κ is measurable, then all open subsets of [κ]κ are Ramsey. Let us remark here that we can with the same methods prove these results with “κ-Borel” in the place of “open”, where the κ-Borel sets are the smallest collection containing the opens and closed under complementation and intersections of length less than κ. Also, although here we consider just subsets of [κ]λ, it is no more difficult to show that partitions of [κ]λ into less than κ many κ-Borel sets have, under the appropriate hypothesis, size κ homogeneous sets.

1971 ◽  
Vol 36 (2) ◽  
pp. 305-308 ◽  
Author(s):  
E. M. Kleinberg ◽  
R. A. Shore

A significant portion of the study of large cardinals in set theory centers around the concept of “partition relation”. To best capture the basic idea here, we introduce the following notation: for x and y sets, κ an infinite cardinal, and γ an ordinal less than κ, we let [x]γ denote the collection of subsets of x of order-type γ and abbreviate with the partition relation for each function F frominto y there exists a subset C of κ of cardinality κ such that (such that for each α < γ) the range of F on [С]γ ([С]α) has cardinality 1. Now although each infinite cardinal κ satisfies the relation for each n and m in ω (F. P. Ramsey [8]), a connection with large cardinals arises when one asks, “For which uncountable κ do we have κ → (κ)2?” Indeed, any uncountable cardinal κ which satisfies κ → (κ)2 is strongly inaccessible and weakly compact (see [9]). As another example one can look at the improvements of Scott's original result to the effect that if there exists a measurable cardinal then there exists a nonconstructible set. Indeed, if κ is a measurable cardinal then κ → (κ)< ω, and as Solovay [11] has shown, if there exists a cardinal κ such that κ → (κ)< ω3 (κ → (ℵ1)< ω, even) then there exists a nonconstructible set of integers.


1987 ◽  
Vol 52 (4) ◽  
pp. 897-907
Author(s):  
Joji Takahashi

As is well known, the following are equivalent for any uniform ultrafilter U on an uncountable cardinal:(i) U is selective;(ii) U → ;(iii) U → .In §1 of this paper, we consider this result in terms of M-ultrafilters (Definition 1.1), where M is a transitive model of ZFC (Zermelo-Fraenkel set theory with the axiom of choice). We define the partition properties and for M-ultrafilters (Definition 1.3), and characterize those M-ultrafilters that possess these properties (Theorem 1.5) so that the result mentioned at the beginning is subsumed as the special case that M is V, the universe of all sets. It turns out that the two properties have to be handled separately, and that, besides selectivity, we need to formulate additional conditions (Definition 1.4). The extra conditions become superfluous when M = V because they are then trivially satisfied. One of them is nothing new; it is none other than Kunen's iterability-of-ultrapowers condition.In §2, we obtain characterizations of the partition properties I+ → and I+ → (Definition 2.3) of uniform ideals I on an infinite cardinal κ (Theorem 2.6). This is done by applying the main results of §1 to the canonical -ultrafilter in the Boolean-valued model constructed from the completion of the quotient algebra P(κ)/I. They are related to certain known characterizations of weakly compact and of Ramsey cardinals.Our basic set theory is ZFC. In §1, it has to be supplemented by a new unary predicate symbol M and new nonlogical axioms that make M look like a transitive model of ZFC.


1980 ◽  
Vol 32 (2) ◽  
pp. 331-341
Author(s):  
Ronald C. Freiwald

All spaces considered here are metrizable. k will always denote an infinite cardinal. The successor of k will be denoted by k+.Of particular interest will be the Baire spaces where each Tn is a discrete space of cardinal k. The product topology on B(k) is the same as the topology given by the (complete) “first-difference” metric, p : p(s, t) = 1/n if Si = ti for 1 ≦ i ≦ n —1 and sn = tn. A great deal of information about these spaces can be found in [4].A subset A of X is called k-analytic (in X) if there exist, for each t ∈ B(k), closed subsets F(t1), …, F(t1, …, tn), … of X such that


2014 ◽  
Vol 79 (4) ◽  
pp. 1092-1119 ◽  
Author(s):  
WILL BONEY

AbstractWe show that Shelah’s Eventual Categoricity Conjecture for successors follows from the existence of class many strongly compact cardinals. This is the first time the consistency of this conjecture has been proven. We do so by showing that every AEC withLS(K) below a strongly compact cardinalκis <κ-tame and applying the categoricity transfer of Grossberg and VanDieren [11]. These techniques also apply to measurable and weakly compact cardinals and we prove similar tameness results under those hypotheses. We isolate a dual property to tameness, calledtype shortness, and show that it follows similarly from large cardinals.


2011 ◽  
Vol 76 (2) ◽  
pp. 519-540 ◽  
Author(s):  
Victoria Gitman

AbstractOne of the numerous characterizations of a Ramsey cardinal κ involves the existence of certain types of elementary embeddings for transitive sets of size κ satisfying a large fragment of ZFC. We introduce new large cardinal axioms generalizing the Ramsey elementary embeddings characterization and show that they form a natural hierarchy between weakly compact cardinals and measurable cardinals. These new axioms serve to further our knowledge about the elementary embedding properties of smaller large cardinals, in particular those still consistent with V = L.


1970 ◽  
Vol 22 (2) ◽  
pp. 227-234
Author(s):  
D. W. Bressler ◽  
A. H. Cayford

The set operations under consideration are Borel operations and Souslin's operation (). With respect to a given family of sets and in a setting free of any topological structure there are defined three Borel families (Definitions 3.1) and the family of Souslin sets (Definition 4.1). Conditions on an initial family are determined under which iteration of the Borel operations with Souslin's operation () on the initial family and the families successively produced results in a non-decreasing sequence of families of analytic sets (Theorem 5.2.1 and Definition 3.5). A classification of families of analytic sets with respect to an initial family of sets is indicated in a manner analogous to the familiar classification of Borel sets (Definition 5.3).


1997 ◽  
Vol 62 (4) ◽  
pp. 1379-1428 ◽  
Author(s):  
Joan Bagaria ◽  
W. Hugh Woodin

Some of the most striking results in modern set theory have emerged from the study of simply-definable sets of real numbers. Indeed, simple questions like: what are the posible cardinalities?, are they measurable?, do they have the property of Baire?, etc., cannot be answered in ZFC.When one restricts the attention to the analytic sets, i.e., the continuous images of Borel sets, then ZFC does provide an answer to these questions. But this is no longer true for the projective sets, i.e., all the sets of reals that can be obtained from the Borel sets by taking continuous images and complements. In this paper we shall concentrate on particular projective classes, the , and using forcing constructions we will produce models of ZFC where, for some n, all , sets have some specified property. For the definition and basic facts about the projective classes , and , as well as the Kleene (or lightface) classes , and , we refer the reader to Moschovakis [19].The first part of the paper is about measure and category. Early in this century, Luzin [16] and Luzin-Sierpiński [17] showed that all analytic (i.e., ) sets of reals are Lebesgue measurable and have the property of Baire.


1977 ◽  
Vol 24 (2) ◽  
pp. 203-215 ◽  
Author(s):  
J. L. Hickman

AbstractA totally ordered set (and corresponding order-type) is said to be rigid if it is not similar to any proper initial segment of itself. The class of rigid ordertypes is closed under addition and multiplication, satisfies both cancellation laws from the left, and admits a partial ordering that is an extension of the ordering of the ordinals. Under this ordering, limits of increasing sequences of rigid order-types are well defined, rigid and satisfy the usual limit laws concerning addition and multiplication. A decomposition theorem is obtained, and is used to prove a characterization theorem on rigid order-types that are additively prime. Wherever possible, use of the Axiom of Choice is eschewed, and theorems whose proofs depend upon Choice are marked.


1979 ◽  
Vol 44 (4) ◽  
pp. 563-565
Author(s):  
Carl F. Morgenstern

It is well known that the first strongly inaccessible cardinal is strictly less than the first weakly compact cardinal which in turn is strictly less than the first Ramsey cardinal, etc. However, once one passes the first measurable cardinal the inequalities are no longer strict. Magidor [3] has shown that the first strongly compact cardinal may be equal to the first measurable cardinal or equal to the first super-compact cardinal (the first supercompact cardinal is strictly larger than the first measurable cardinal). In this note we will indicate how Magidor's methods can be used to show that it is undecidable whether one cardinal (the first strongly compact) is greater than or less than another large cardinal (the first huge cardinal). We assume that the reader is familiar with the ultrapower construction of Scott, as presented in Drake [1] or Kanamori, Reinhardt and Solovay [2].Definition. A cardinal κ is huge (or 1-huge) if there is an elementary embedding j of the universe V into a transitive class M such that M contains the ordinals, is closed under j(κ) sequences, j(κ) > κ and j ↾ Rκ = id. Let κ denote the first huge cardinal, and let λ = j(κ).One can see from easy reflection arguments that κ and λ are inaccessible in V and, in fact, that κ is measurable in V.


Sign in / Sign up

Export Citation Format

Share Document