Nonabsoluteness of elementary embeddings

1989 ◽  
Vol 54 (3) ◽  
pp. 774-778
Author(s):  
Friedrich Wehrung

Ifκis a measurable cardinal, let us say that a measure onκis aκ-complete nonprincipal ultrafilter onκ. IfUis a measure onκ, letjUbe the canonical elementary embedding ofVinto its Ultrapower UltU(V). Ifxis a set, say thatUmovesxwhenjU(x)≠x; say thatκmovesxwhen some measure onκmovesx. Recall Kunen's lemma (see [K]): “Every ordinal is moved only by finitely many measurable cardinals.” Kunen's proof (see [K]) and Fleissner's proof (see [KM, III, §10]) are essentially nonconstructive.The following proposition can be proved by using elementary facts about iterated ultrapowers.Proposition.Let ‹Un: n ∈ ω› be a sequence of measures on a strictly increasing sequence ‹κn: n ∈ ω› of measurable cardinals. Let U = ‹ Wα: α < ω2›, where Wωm + n= Um(m, n ∈ ω). Then, for each θ inUltU(V),if E is the (minimal) support of θ inUltU(V),then, for all m ∈ ω, Ummoves θ iff E ∩ [ωm, ω(m + 1))≠ ∅.

2011 ◽  
Vol 76 (2) ◽  
pp. 519-540 ◽  
Author(s):  
Victoria Gitman

AbstractOne of the numerous characterizations of a Ramsey cardinal κ involves the existence of certain types of elementary embeddings for transitive sets of size κ satisfying a large fragment of ZFC. We introduce new large cardinal axioms generalizing the Ramsey elementary embeddings characterization and show that they form a natural hierarchy between weakly compact cardinals and measurable cardinals. These new axioms serve to further our knowledge about the elementary embedding properties of smaller large cardinals, in particular those still consistent with V = L.


1981 ◽  
Vol 46 (1) ◽  
pp. 59-66
Author(s):  
A. Kanamori

This paper continues the study of κ-ultrafilters over a measurable cardinal κ, following the sequence of papers Ketonen [2], Kanamori [1] and Menas [4]. Much of the concern will be with p-point κ-ultrafilters, which have become a focus of attention because they epitomize situations of further complexity beyond the better understood cases, normal and product κ-ultrafilters.For any κ-ultrafilter D, let iD: V → MD ≃ Vκ/D be the elementary embedding of the universe into the transitization of the ultrapower by D. Situations of U < RKD will be exhibited when iU(κ) < iD(κ), and when iU(κ) = iD(κ). The main result will then be that if the latter case obtains, then there is an inner model with two measurable cardinals. (As will be pointed out, this formulation is due to Kunen, and improves on an earlier version of the author.) Incidentally, a similar conclusion will also follow from the assertion that there is an ascending Rudin-Keisler chain of κ-ultrafilters of length ω + 1. The interest in these results lies in the derivability of a substantial large cardinal assertion from plausible hypotheses on κ-ultrafilters.


2009 ◽  
Vol 74 (4) ◽  
pp. 1081-1099 ◽  
Author(s):  
Matthew Foreman

Many classical statements of set theory are settled by the existence of generic elementary embeddings that are analogous the elementary embeddings posited by large cardinals. [2] The embeddings analogous to measurable cardinals are determined by uniform, κ-complete precipitous ideals on cardinals κ. Stronger embeddings, analogous to those originating from supercompact or huge cardinals are encoded by normal fine ideals on sets such as [κ]<λ or [κ]λ.The embeddings generated from these ideals are limited in ways analogous to conventional large cardinals. Explicitly, if j: V → M is a generic elementary embedding with critical point κ and λ supnЄωjn(κ) and the forcing yielding j is λ-saturated then j“λ+ ∉ M. (See [2].)Ideals that yield embeddings that are analogous to strongly compact cardinals have more puzzling behavior and the analogy is not as straightforward. Some natural ideal properties of this kind have been shown to be inconsistent:Theorem 1 (Kunen). There is no ω2-saturated, countably complete uniform ideal on any cardinal in the interval [ℵω, ℵω).Generic embeddings that arise from countably complete, ω2-saturated ideals have the property that sup . So the Kunen result is striking in that it apparently allows strong ideals to exist above the conventional large cardinal limitations. The main result of this paper is that it is consistent (relative to a huge cardinal) that such ideals exist.


1981 ◽  
Vol 46 (2) ◽  
pp. 296-300 ◽  
Author(s):  
Yuzuru Kakuda

T. Jech and K. Prikry introduced the concept of precipitous ideals as a counterpart of measurable cardinals for small cardinals (Jech and Prikry [1]). To get a precipitous ideal on ℵ1( W. Mitchell used the Cohen extension by the standard Levy collapse that makes κ = ℵ1, where κ is a measurable cardinal in the ground model (Jech, Magidor, Mitchell and Prikry [2]). His proof essentially used the fact that , where is the notion of forcing of Levy collapse and j is the elementary embedding obtained by a normal ultrafilter on κ.On the other hand, we know that has the κ-chain condition. In this paper, we show that the κ-chain condition for notions of forcing plays an essential role for preserving normal precipitous ideals. Namely,Theorem 1. Let κ be a regular uncountable cardinal and I a normal ideal on κ. Let be a notion of forcing with the κ-chain condition. Then, I is precipitous iff ⊩“the ideal on κ generated by I is precipitous”.As an application of Theorem 1, we have the following theorem.Theorem 2. Let κ be a regular uncountable cardinal, and Γ be a κ-saturated normal ideal on κ. Then, {a < κ; the ideal of thin sets on a is precipitous} has either Γ-measure one or Γ-measure zero, and the ideal of thin sets on κ is precipitous iff {α< κ; the ideal of thin sets on α is precipitous) has Γ-measure one.


1985 ◽  
Vol 50 (1) ◽  
pp. 220-226
Author(s):  
Michael Sheard

Probably the two most famous examples of elementary embeddings between inner models of set theory are the embeddings of the universe into an inner model given by a measurable cardinal and the embeddings of the constructible universeLinto itself given by 0#. In both of these examples, the “target model” is a subclass of the “ground model” (and in the latter case they are equal). It is not hard to find examples of embeddings in which the target model is not a subclass of the ground model: ifis a generic ultrafilter arising from forcing with a precipitous ideal on a successor cardinalκ, then the ultraproduct of the ground model viacollapsesκ. Such considerations suggest a classification of how close the target model comes to “fitting inside” the ground model.Definition 1.1. LetMandNbe inner models (transitive, proper class models) of ZFC, and letj:M→Nbe an elementary embedding. Theco-critical pointofjis the least ordinalλ, if any exist, such that there isX⊆λ, X∈NbutX∉M. Such anXis called anew subsetofλ.It is easy to see that the co-critical point ofj:M→Nis a cardinal inN.


2001 ◽  
Vol 66 (3) ◽  
pp. 1090-1116 ◽  
Author(s):  
J. Vickers ◽  
P. D. Welch

AbstractWe consider the following question of Kunen:Does Con(ZFC + ∃M a transitive inner model and a non-trivial elementary embedding j: M → V)imply Con(ZFC + ∃ a measurable cardinal)?We use core model theory to investigate consequences of the existence of such a j: M → V. We prove, amongst other things, the existence of such an embedding implies that the core model K is a model of “there exists a proper class of almost Ramsey cardinals”. Conversely, if On is Ramsey, then such a j. M are definable.We construe this as a negative answer to the question above. We consider further the consequences of strengthening the closure assumption on j to having various classes of fixed points.


2008 ◽  
Vol 73 (3) ◽  
pp. 906-918 ◽  
Author(s):  
Sy-David Friedman ◽  
Katherine Thompson

AbstractAn important technique in large cardinal set theory is that of extending an elementary embedding j: M → N between inner models to an elementary embedding j* : M[G] → N[G*] between generic extensions of them. This technique is crucial both in the study of large cardinal preservation and of internal consistency. In easy cases, such as when forcing to make the GCH hold while preserving a measurable cardinal (via a reverse Easton iteration of α-Cohen forcing for successor cardinals α), the generic G* is simply generated by the image of G. But in difficult cases, such as in Woodin's proof that a hypermeasurable is sufficient to obtain a failure of the GCH at a measurable, a preliminary version of G* must be constructed (possibly in a further generic extension of M[G]) and then modified to provide the required G*. In this article we use perfect trees to reduce some difficult cases to easy ones, using fusion as a substitute for distributivity. We apply our technique to provide a new proof of Woodin's theorem as well as the new result that global domination at inaccessibles (the statement that d(κ) is less than 2κ for inaccessible κ, where d(κ) is the dominating number at κ) is internally consistent, given the existence of 0#.


1985 ◽  
Vol 50 (2) ◽  
pp. 531-543 ◽  
Author(s):  
Arthur W. Apter

A very fruitful line of research in recent years has been the application of techniques in large cardinals and forcing to the production of models in which certain consequences of the axiom of determinateness (AD) are true or in which certain “AD-like” consequences are true. Numerous results have been published on this subject, among them the papers of Bull and Kleinberg [4], Bull [3], Woodin [15], Mitchell [11], and [1], [2].Another such model will be constructed in this paper. Specifically, the following theorem is proven.Theorem 1. Con(ZFC + There are cardinals κ < δ < λ so that κ is a supercompact limit of supercompact cardinals, λ is a measurable cardinal, and δ is λ supercompact) ⇒ Con(ZF + ℵ1 and ℵ2 are Ramsey cardinals + The ℵn for 3 ≤ n ≤ ω are singular cardinals of cofinality ω each of which carries a Rowbottom filter + ℵω + 1 is a Ramsey cardinal + ℵω + 2 is a measurable cardinal).It is well known that under AD + DC, ℵ2 and ℵ2 are measurable cardinals, the ℵn for 3 ≤ n < ω are singular Jonsson cardinals of cofinality ℵ2, ℵω is a Rowbottom cardinal, and ℵω + 1 and ℵω + 2 are measurable cardinals.The proof of the above theorem will use the existence of normal ultrafilters which satisfy a certain property (*) (to be defined later) and an automorphism argument which draws upon the techniques developed in [9], [2], and [4] but which shows in addition that certain supercompact Prikry partial orderings are in a strong sense “homogeneous”. Before beginning the proof of the theorem, however, we briefly mention some preliminaries.


1971 ◽  
Vol 36 (3) ◽  
pp. 407-413 ◽  
Author(s):  
Kenneth Kunen

One of the standard ways of postulating large cardinal axioms is to consider elementary embeddings,j, from the universe,V, into some transitive submodel,M. See Reinhardt–Solovay [7] for more details. Ifjis not the identity, andκis the first ordinal moved byj, thenκis a measurable cardinal. Conversely, Scott [8] showed that wheneverκis measurable, there is suchjandM. If we had assumed, in addition, that, thenκwould be theκth measurable cardinal; in general, the wider we assumeMto be, the largerκmust be.


1979 ◽  
Vol 44 (4) ◽  
pp. 563-565
Author(s):  
Carl F. Morgenstern

It is well known that the first strongly inaccessible cardinal is strictly less than the first weakly compact cardinal which in turn is strictly less than the first Ramsey cardinal, etc. However, once one passes the first measurable cardinal the inequalities are no longer strict. Magidor [3] has shown that the first strongly compact cardinal may be equal to the first measurable cardinal or equal to the first super-compact cardinal (the first supercompact cardinal is strictly larger than the first measurable cardinal). In this note we will indicate how Magidor's methods can be used to show that it is undecidable whether one cardinal (the first strongly compact) is greater than or less than another large cardinal (the first huge cardinal). We assume that the reader is familiar with the ultrapower construction of Scott, as presented in Drake [1] or Kanamori, Reinhardt and Solovay [2].Definition. A cardinal κ is huge (or 1-huge) if there is an elementary embedding j of the universe V into a transitive class M such that M contains the ordinals, is closed under j(κ) sequences, j(κ) > κ and j ↾ Rκ = id. Let κ denote the first huge cardinal, and let λ = j(κ).One can see from easy reflection arguments that κ and λ are inaccessible in V and, in fact, that κ is measurable in V.


Sign in / Sign up

Export Citation Format

Share Document