Definable equivalence relations on algebraically closed fields

1989 ◽  
Vol 54 (3) ◽  
pp. 928-935 ◽  
Author(s):  
Lou van den Dries ◽  
David Marker ◽  
Gary Martin

This article was inspired by the question: is there a definable equivalence relation on the field of complex numbers, each of whose equivalence classes has exactly two elements? The answer turned out to be no, as we now explain in greater detail.Let Κ be an algebraically closed field and let E be a definable equivalence relation on Κ. [Note: By “definable” we will always mean “definable with parameters”.] Either E has one cofinite class, or all classes are finite and there is a number d such that all but a finite set of classes have cardinality d. In the latter case let B be the finite set of elements of Κ which are not in a class of size d. We prove the following result.Theorem 1. a) If char(Κ) = 0 or char(Κ) = p > d, then ∣B∣ ≡ 1 (mod d).b) If char(Κ) = 2 and d = 2, then ∣B∣ ≡ 0 (mod 2).c) If char(Κ) = p > 2 and d = p + s, where 1 ≤ s ≤ p/2, then ∣B∣ ≡ p + 1 (mod d).Furthermore, a)−c) are the only restrictions on ≡B≡.If one is in the right mood, one can view this theorem as saying that the “algebraic cardinality” of the complex numbers is congruent to 1 (mod n) for every n.§1 contains a reduction of the problem to the special case where E is induced by a rational function in one variable. §2 contains the main calculations and the proofs of a)−c). §3 contains eight families of examples showing that all else is possible. In §4 we prove an analogous result for real closed fields.

2008 ◽  
Vol 28 (5) ◽  
pp. 1509-1531 ◽  
Author(s):  
THIERRY GIORDANO ◽  
HIROKI MATUI ◽  
IAN F. PUTNAM ◽  
CHRISTIAN F. SKAU

AbstractWe prove a result about extension of a minimal AF-equivalence relation R on the Cantor set X, the extension being ‘small’ in the sense that we modify R on a thin closed subset Y of X. We show that the resulting extended equivalence relation S is orbit equivalent to the original R, and so, in particular, S is affable. Even in the simplest case—when Y is a finite set—this result is highly non-trivial. The result itself—called the absorption theorem—is a powerful and crucial tool for the study of the orbit structure of minimal ℤn-actions on the Cantor set, see Remark 4.8. The absorption theorem is a significant generalization of the main theorem proved in Giordano et al [Affable equivalence relations and orbit structure of Cantor dynamical systems. Ergod. Th. & Dynam. Sys.24 (2004), 441–475] . However, we shall need a few key results from the above paper in order to prove the absorption theorem.


Author(s):  
D. F. Holt ◽  
N. Spaltenstein

AbstractThe classification of the nilpotent orbits in the Lie algebra of a reductive algebraic group (over an algebraically closed field) is given in all the cases where it was not previously known (E7 and E8 in bad characteristic, F4 in characteristic 3). The paper exploits the tight relation with the corresponding situation over a finite field. A computer is used to study this case for suitable choices of the finite field.


1991 ◽  
Vol 56 (2) ◽  
pp. 608-617 ◽  
Author(s):  
Michał Krynicki ◽  
Hans-Peter Tuschik

We consider the language L(Q), where L is a countable first-order language and Q is an additional generalized quantifier. A weak model for L(Q) is a pair 〈, q〉 where is a first-order structure for L and q is a family of subsets of its universe. In case that q is the set of classes of some equivalence relation the weak model 〈, q〉 is called a partition model. The interpretation of Q in partition models was studied by Szczerba [3], who was inspired by Pawlak's paper [2]. The corresponding set of tautologies in L(Q) is called rough logic. In the following we will give a set of axioms of rough logic and prove its completeness. Rough logic is designed for creating partition models.The partition models are the weak models arising from equivalence relations. For the basic properties of the logic of weak models the reader is referred to Keisler's paper [1]. In a weak model 〈, q〉 the formulas of L(Q) are interpreted as usual with the additional clause for the quantifier Q: 〈, q〉 ⊨ Qx φ(x) iff there is some X ∊ q such that 〈, q〉 ⊨ φ(a) for all a ∊ X.In case X satisfies the right side of the above equivalence we say that X is contained in φ(x) or, equivalently, φ(x) contains X.


1990 ◽  
Vol 55 (3) ◽  
pp. 1138-1142 ◽  
Author(s):  
Anand Pillay

We point out that a group first order definable in a differentially closed field K of characteristic 0 can be definably equipped with the structure of a differentially algebraic group over K. This is a translation into the framework of differentially closed fields of what is known for groups definable in algebraically closed fields (Weil's theorem).I restrict myself here to showing (Theorem 20) how one can find a large “differentially algebraic group chunk” inside a group defined in a differentially closed field. The rest of the translation (Theorem 21) follows routinely, as in [B].What is, perhaps, of interest is that the proof proceeds at a completely general (soft) model theoretic level, once Facts 1–4 below are known.Fact 1. The theory of differentially closed fields of characteristic 0 is complete and has quantifier elimination in the language of differential fields (+, ·,0,1, −1,d).Fact 2. Affine n-space over a differentially closed field is a Noetherian space when equipped with the differential Zariski topology.Fact 3. If K is a differentially closed field, k ⊆ K a differential field, and a and are in k, then a is in the definable closure of k ◡ iff a ∈ ‹› (where k ‹› denotes the differential field generated by k and).Fact 4. The theory of differentially closed fields of characteristic zero is totally transcendental (in particular, stable).


Author(s):  
URSULA MOLTER ◽  
ALEXIA YAVICOLI

AbstractGiven any dimension function h, we construct a perfect set E ⊆ ${\mathbb{R}}$ of zero h-Hausdorff measure, that contains any finite polynomial pattern.This is achieved as a special case of a more general construction in which we have a family of functions $\mathcal{F}$ that satisfy certain conditions and we construct a perfect set E in ${\mathbb{R}}^N$, of h-Hausdorff measure zero, such that for any finite set {f1,. . .,fn} ⊆ $\mathcal{F}$, E satisfies that $\bigcap_{i=1}^n f^{-1}_i(E)\neq\emptyset$.We also obtain an analogous result for the images of functions. Additionally we prove some related results for countable (not necessarily finite) intersections, obtaining, instead of a perfect set, an $\mathcal{F}_{\sigma}$ set without isolated points.


2012 ◽  
Vol 11 (05) ◽  
pp. 1250088
Author(s):  
RICCARDO GHILONI

In this paper, we prove that the rings of quaternions and of octonions over an arbitrary real closed field are algebraically closed in the sense of Eilenberg and Niven. As a consequence, we infer that some reasonable algebraic closure conditions, including the one of Eilenberg and Niven, are equivalent on the class of centrally finite alternative division rings. Furthermore, we classify centrally finite alternative division rings satisfying such equivalent algebraic closure conditions: up to isomorphism, they are either the algebraically closed fields or the rings of quaternions over real closed fields or the rings of octonions over real closed fields.


2017 ◽  
Vol 2019 (6) ◽  
pp. 1863-1893 ◽  
Author(s):  
Jeffrey D Achter ◽  
Sebastian Casalaina-Martin ◽  
Charles Vial

Abstract A cycle is algebraically trivial if it can be exhibited as the difference of two fibers in a family of cycles parameterized by a smooth integral scheme. Over an algebraically closed field, it is a result of Weil that it suffices to consider families of cycles parameterized by curves, or by abelian varieties. In this article, we extend these results to arbitrary base fields. The strengthening of these results turns out to be a key step in our work elsewhere extending Murre’s results on algebraic representatives for varieties over algebraically closed fields to arbitrary perfect fields.


1980 ◽  
Vol 29 (4) ◽  
pp. 462-468 ◽  
Author(s):  
Robert M. Guralnick ◽  
Michael D. Miller

AbstractLet K be an algebraically closed field of characteristic zero, and S a nonempty subset of K such that S Q = Ø and card S < card K, where Q is the field of rational numbers. By Zorn's Lemma, there exist subfields F of K which are maximal with respect to the property of being disjoint from S. This paper examines such subfields and investigates the Galois group Gal K/F along with the lattice of intermediate subfields.


1998 ◽  
Vol 63 (2) ◽  
pp. 739-743 ◽  
Author(s):  
Deirdre Haskell ◽  
Dugald Macpherson

In this note, we consider models of the theories of valued algebraically closed fields and convexly valued real closed fields, their reducts to the pure field or ordered field language respectively, and expansions of these by predicates which are definable in the valued field. We show that, in terms of definability, there is no structure properly between the pure (ordered) field and the valued field. Our results are analogous to several other definability results for reducts of algebraically closed and real closed fields; see [9], [10], [11] and [12]. Throughout this paper, definable will mean definable with parameters.Theorem A. Let ℱ = (F, +, ×, V) be a valued, algebraically closed field, where V denotes the valuation ring. Let A be a subset ofFndefinable in ℱv. Then either A is definable in ℱ = (F, +, ×) or V is definable in.Theorem B. Let ℛv = (R, <, +, ×, V) be a convexly valued real closed field, where V denotes the valuation ring. Let Abe a subset ofRndefinable in ℛv. Then either A is definable in ℛ = (R, <, +, ×) or V is definable in.The proofs of Theorems A and B are quite similar. Both ℱv and ℛv admit quantifier elimination if we adjoin a definable binary predicate Div (interpreted by Div(x, y) if and only if v(x) ≤ v(y)). This is proved in [14] (extending [13]) in the algebraically closed case, and in [4] in the real closed case. We show by direct combinatorial arguments that if the valuation is not definable then the expanded structure is strongly minimal or o-minimal respectively. Then we call on known results about strongly minimal and o-minimal fields to show that the expansion is not proper.


1988 ◽  
Vol 53 (1) ◽  
pp. 188-199
Author(s):  
Gary A. Martin

Let K be an algebraically closed field and let L be its canonical language; that is, L consists of all relations on K which are definable from addition, multiplication, and parameters from K. Two sublanguages L1 and L2 of L are definably equivalent if each relation in L1 can be defined by an L2-formula with parameters in K, and vice versa. The equivalence classes of sublanguages of L form a quotient lattice of the power set of L about which very little is known. We will not distinguish between a sublanguage and its equivalence class.Let Lm denote the language of multiplication alone, and let La denote the language of addition alone. Let f ∈ K [X, Y] and consider the algebraic function defined by f (x, y) = 0 for x, y ∈ K. Let Lf denote the language consisting of the relation defined by f. The possibilities for Lm ∨ Lf are examined in §2, and the possibilities for La ∨ Lf are examined in §3. In fact the only comprehensive results known are under the additional hypothesis that f actually defines a rational function (i.e., when f is linear in one of the variables), and in positive characteristic, only expansions of addition by polynomials (i.e., when f is linear and monic in one of the variables) are understood. It is hoped that these hypotheses will turn out to be unnecessary, so that reasonable generalizations of the theorems described below to algebraic functions will be true. The conjecture is that L covers Lm and that the only languages between La and L are expansions of La by scalar multiplications.


Sign in / Sign up

Export Citation Format

Share Document