scholarly journals Parameter Spaces for Algebraic Equivalence

2017 ◽  
Vol 2019 (6) ◽  
pp. 1863-1893 ◽  
Author(s):  
Jeffrey D Achter ◽  
Sebastian Casalaina-Martin ◽  
Charles Vial

Abstract A cycle is algebraically trivial if it can be exhibited as the difference of two fibers in a family of cycles parameterized by a smooth integral scheme. Over an algebraically closed field, it is a result of Weil that it suffices to consider families of cycles parameterized by curves, or by abelian varieties. In this article, we extend these results to arbitrary base fields. The strengthening of these results turns out to be a key step in our work elsewhere extending Murre’s results on algebraic representatives for varieties over algebraically closed fields to arbitrary perfect fields.

1980 ◽  
Vol 29 (4) ◽  
pp. 462-468 ◽  
Author(s):  
Robert M. Guralnick ◽  
Michael D. Miller

AbstractLet K be an algebraically closed field of characteristic zero, and S a nonempty subset of K such that S Q = Ø and card S < card K, where Q is the field of rational numbers. By Zorn's Lemma, there exist subfields F of K which are maximal with respect to the property of being disjoint from S. This paper examines such subfields and investigates the Galois group Gal K/F along with the lattice of intermediate subfields.


1978 ◽  
Vol 43 (2) ◽  
pp. 250-259 ◽  
Author(s):  
Bruce I. Rose

AbstractLet n ≥ 3. The following theorems are proved.Theorem. The theory of the class of strictly upper triangular n × n matrix rings over fields is finitely axiomatizable.Theorem. If R is a strictly upper triangular n × n matrix ring over a field K, then there is a recursive map σ from sentences in the language of rings with constants for K into sentences in the language of rings with constants for R such that K ⊨ φ if and only if R φ σ(φ).Theorem. The theory of a strictly upper triangular n × n matrix ring over an algebraically closed field is ℵ1-categorical.


Author(s):  
Po Hu ◽  
Igor Kriz ◽  
Kyle Ormsby

AbstractWe discuss certain calculations in the 2-complete motivic stable homotopy category over an algebraically closed field of characteristic 0. Specifically, we prove the convergence of motivic analogues of the Adams and Adams-Novikov spectral sequences, and as one application, discuss the 2-complete version of the complex motivic J -homomorphism.


2018 ◽  
Vol 71 (4) ◽  
pp. 819-842 ◽  
Author(s):  
Ivan Kaygorodov ◽  
Yury Volkov

AbstractThe work is devoted to the variety of two-dimensional algebras over algebraically closed fields. First we classify such algebras modulo isomorphism. Then we describe the degenerations and the closures of certain algebra series in the variety of two-dimensional algebras. Finally, we apply our results to obtain analogous descriptions for the subvarieties of flexible and bicommutative algebras. In particular, we describe rigid algebras and irreducible components for these subvarieties.


Author(s):  
C. J. Ash ◽  
A. Nerode

AbstractIt is shown that no functor F exists from the category of sets with injections, to the category of algebraically closed fields of given characteristic, with monomorphisms, having the properties that for all sets A. F(A) is an algebraically closed field having transcendence base A and for all injections f. F(f) extends f. There does exist such a functor from the category of linearly-ordered sets with order monomorphisms.An application to model-theory using the same methods is given showing that while the theory of algebraically closed fields is ω-stable, its Skolemization is not stable in any power.


Author(s):  
D. F. Holt ◽  
N. Spaltenstein

AbstractThe classification of the nilpotent orbits in the Lie algebra of a reductive algebraic group (over an algebraically closed field) is given in all the cases where it was not previously known (E7 and E8 in bad characteristic, F4 in characteristic 3). The paper exploits the tight relation with the corresponding situation over a finite field. A computer is used to study this case for suitable choices of the finite field.


1990 ◽  
Vol 55 (3) ◽  
pp. 1138-1142 ◽  
Author(s):  
Anand Pillay

We point out that a group first order definable in a differentially closed field K of characteristic 0 can be definably equipped with the structure of a differentially algebraic group over K. This is a translation into the framework of differentially closed fields of what is known for groups definable in algebraically closed fields (Weil's theorem).I restrict myself here to showing (Theorem 20) how one can find a large “differentially algebraic group chunk” inside a group defined in a differentially closed field. The rest of the translation (Theorem 21) follows routinely, as in [B].What is, perhaps, of interest is that the proof proceeds at a completely general (soft) model theoretic level, once Facts 1–4 below are known.Fact 1. The theory of differentially closed fields of characteristic 0 is complete and has quantifier elimination in the language of differential fields (+, ·,0,1, −1,d).Fact 2. Affine n-space over a differentially closed field is a Noetherian space when equipped with the differential Zariski topology.Fact 3. If K is a differentially closed field, k ⊆ K a differential field, and a and are in k, then a is in the definable closure of k ◡ iff a ∈ ‹› (where k ‹› denotes the differential field generated by k and).Fact 4. The theory of differentially closed fields of characteristic zero is totally transcendental (in particular, stable).


2004 ◽  
Vol 77 (1) ◽  
pp. 123-128 ◽  
Author(s):  
W. D. Munn

AbstractIt is shown that the following conditions on a finite-dimensional algebra A over a real closed field or an algebraically closed field of characteristic zero are equivalent: (i) A admits a special involution, in the sense of Easdown and Munn, (ii) A admits a proper involution, (iii) A is semisimple.


2012 ◽  
Vol 11 (05) ◽  
pp. 1250088
Author(s):  
RICCARDO GHILONI

In this paper, we prove that the rings of quaternions and of octonions over an arbitrary real closed field are algebraically closed in the sense of Eilenberg and Niven. As a consequence, we infer that some reasonable algebraic closure conditions, including the one of Eilenberg and Niven, are equivalent on the class of centrally finite alternative division rings. Furthermore, we classify centrally finite alternative division rings satisfying such equivalent algebraic closure conditions: up to isomorphism, they are either the algebraically closed fields or the rings of quaternions over real closed fields or the rings of octonions over real closed fields.


1998 ◽  
Vol 63 (2) ◽  
pp. 739-743 ◽  
Author(s):  
Deirdre Haskell ◽  
Dugald Macpherson

In this note, we consider models of the theories of valued algebraically closed fields and convexly valued real closed fields, their reducts to the pure field or ordered field language respectively, and expansions of these by predicates which are definable in the valued field. We show that, in terms of definability, there is no structure properly between the pure (ordered) field and the valued field. Our results are analogous to several other definability results for reducts of algebraically closed and real closed fields; see [9], [10], [11] and [12]. Throughout this paper, definable will mean definable with parameters.Theorem A. Let ℱ = (F, +, ×, V) be a valued, algebraically closed field, where V denotes the valuation ring. Let A be a subset ofFndefinable in ℱv. Then either A is definable in ℱ = (F, +, ×) or V is definable in.Theorem B. Let ℛv = (R, <, +, ×, V) be a convexly valued real closed field, where V denotes the valuation ring. Let Abe a subset ofRndefinable in ℛv. Then either A is definable in ℛ = (R, <, +, ×) or V is definable in.The proofs of Theorems A and B are quite similar. Both ℱv and ℛv admit quantifier elimination if we adjoin a definable binary predicate Div (interpreted by Div(x, y) if and only if v(x) ≤ v(y)). This is proved in [14] (extending [13]) in the algebraically closed case, and in [4] in the real closed case. We show by direct combinatorial arguments that if the valuation is not definable then the expanded structure is strongly minimal or o-minimal respectively. Then we call on known results about strongly minimal and o-minimal fields to show that the expansion is not proper.


Sign in / Sign up

Export Citation Format

Share Document